科目: 來源: 題型:
【題目】如圖1在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于點D,BE⊥MN于點E.
(1)求證:①△ADC≌△CEB;②DE=AD+BE.
(2)當直線MN繞點C旋轉(zhuǎn)到圖2的位置時,DE、AD、BE又怎樣的關系?并加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=( 。
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
科目: 來源: 題型:
【題目】在ΔABC中,∠ABC的平分線與∠ACB的外角∠ACE的平分線相交于點D。
⑴.若∠ABC=60°,∠ACB=40°,求∠A和∠D的度數(shù)。
⑵.由⑴小題的計算結果,猜想,∠A和∠D有什么數(shù)量關系,并加以證明。
查看答案和解析>>
科目: 來源: 題型:
【題目】我市某農(nóng)場有A、B兩種型號的收割機共20臺,每臺A型收割機每天可收大麥100畝或者小麥80畝,每臺B型收割機每天可收大麥80畝或者小麥60畝,該農(nóng)場現(xiàn)有19 000畝大麥和11 500畝小麥先后等待收割.先安排這20臺收割機全部收割大麥,并且恰好10天時間全部收完.
(1)問A、B兩種型號的收割機各多少臺?
(2)由于氣候影響,要求通過加班方式使每臺收割機每天多完成10%的收割量,問這20臺收割機能否在一周時間內(nèi)完成全部小麥收割任務?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點B,F,C,E在直線l上(F,C之間不能直接測量),點A,D在l異側,測得AB=DE,AC=DF,BF=EC.
(1)求證:△ABC≌△DEF;
(2)指出圖中所有平行的線段,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知CD⊥AB于點D,BE⊥ AC于點E, CD、 BE交于點O,且AO平分∠BAC,則圖中的全等三角形共有_________________對。
查看答案和解析>>
科目: 來源: 題型:
【題目】在數(shù)學課本中,有這樣一道題:已知:如(圖1),∠B+∠C=∠BEC求證:AB∥CD
(1)請補充下面證明過程
證明:過點E,做EF∥AB,如(圖2)
∴∠B=∠
∵∠B+∠C=∠BEC∠BEF+∠FEC=∠BEC(已知)
∴∠B+∠C=∠BEF+∠FEC(等量代換)
∴∠ =∠ (等式性質(zhì))
∴EF∥
∵EF∥AB
∴AB∥CD(平行于同一條直線的兩條直線互相平行)
(2)請再選用一種方法,加以證明
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,在平面直角坐標系xOy 中,拋物線y=ax2+bx+3經(jīng)過點A(-1,0) 、B(3,0) 兩點,且與y軸交于點C
.
(1)求拋物線的表達式;
(2)如圖②,用寬為4個單位長度的直尺垂直于x軸,并沿x軸左右平移,直尺的左右兩邊所在的直線與拋物線相交于P、 Q兩點(點P在點Q的左側),連接PQ,在線段PQ上方拋物線上有一動點D,連接DP、DQ.
①若點P的橫坐標為,求△DPQ面積的最大值,并求此時點D 的坐標;
②直尺在平移過程中,△DPQ面積是否有最大值?若有,求出面積的最大值;若沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com