相關(guān)習題
 0  356688  356696  356702  356706  356712  356714  356718  356724  356726  356732  356738  356742  356744  356748  356754  356756  356762  356766  356768  356772  356774  356778  356780  356782  356783  356784  356786  356787  356788  356790  356792  356796  356798  356802  356804  356808  356814  356816  356822  356826  356828  356832  356838  356844  356846  356852  356856  356858  356864  356868  356874  356882  366461 

科目: 來源: 題型:

【題目】如圖所示,在四邊形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.

(1)連接BC,求BC的長;

(2)求四邊形ABDC的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,如圖:在平面直角坐標系中,O為坐標原點,四邊形OABC矩形,點A、C的坐標分別為、,點DOA的中點,點PBC邊上運動,當是等腰三角形時,點Р的坐標為_______________

查看答案和解析>>

科目: 來源: 題型:

【題目】已知12箱蘋果,以每箱10千克為標準,超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負數(shù),稱重記錄如下:

+0.2 ,—0.2,+0. 7,—0.3,—0.4,+0.6,0,—0.1,—0.6,+0.5,—0.2,—0.5。

⑴求12箱蘋果的總重量;

⑵若每箱蘋果的重量標準為100.5(千克),則這12箱有幾箱不合乎標準的?

查看答案和解析>>

科目: 來源: 題型:

【題目】x滿足(5-x)(x-2=2,求(x-52+2-x2的值;

解:設(shè)5-x=a,x-2=b,則(5-x)(x-2=ab=2,a+b=5-x+x-2=3

所以(x-52+2-x2=5-x2+x-22=a2+b2=a+b2-2ab=32-2×2=5,

請仿照上面的方法求解下面的問題

1)若x滿足(9-x)(x-4=4,求(9-x2+x-42的值;

2)已知正方形ABCD的邊長為x,E,F分別是AD,DC上的點,且AE=2,CF=4,長方形EMFD的面積是63,分別以MF、DF為邊作正方形,求陰影部分的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】我國古代數(shù)學家趙爽的勾股圓方圖是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a、b,那么 的值為( ).

A. 49 B. 25 C. 13 D. 1

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,O是坐標原點,點A、B分別在y軸的正半軸和x軸的正半軸上,OA=OB,AOB的面積為18.過點A作直線ly軸.

1)求點A的坐標;

2)點C是第一象限直線l上一動點,連接BC,過點BBDBC,交y軸于點設(shè)點D的縱坐標為t,點C的橫坐標為d,求td的關(guān)系式;

3)在(2)的條件下,過點D作直線DFAB,交x軸于點F,交直線l于點E,OF=EC時,求點E的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】(問題提出)

1)如圖①,已知 AB CD,求證 :∠1+MEN+2=360°

(推廣應(yīng)用)

2)如圖②,已知 AB CD,求∠1+2+3+4+5 +6的度數(shù)為___________

如圖③,已知 ABCD ,求∠1+2+3+4+5 +6++n的度數(shù)為_________

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在矩形ABCD中,EF分別是邊AB、CD上的點,AE=CF,連接EFBFEF與對角線AC交于O點,且BE=BF∠BEF=2∠BAC。

1)求證:OE=OF;

2)若BC=,求AB的長。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知ABC中,點DBC的中點,BD=AB,ADBC

1)如圖1,求∠BAD的度數(shù);

2)如圖2,點EBC上一點,點FAC上一點,連接AE、BF交于點G,若∠AGF=60°,求證:BE=CF;

3)如圖3,在(2)的條件下,點GBF的中點,點HAG上一點,延長BHAC于點K,AK=HK,BMAEAE延長線于點M,BG=9HM=10,求線段AG的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AD是斜邊上的中線,E是AD的中點,過點A作AF∥BC交BE的延長線于F,連接CF.

(1)求證:BD=AF;

(2)判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案