科目: 來源: 題型:
【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當∠BQD=30°時,求AP的長;
(2)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】小明同學想測量位于池塘兩端的A、B兩點的距離.他沿著與直線AB平行的道路EF行走,當行走到點C處,測得∠ACF=45°,再向前行走一段距離時到點D處,側(cè)得∠BDF=65°.若直線AB與EF之間的距離為60米.
(1)設池塘兩端的距離AB=x米,試用含x的代數(shù)式表示CD的長;
(2)當CD=100米時,求A、B兩點的距離(計算結(jié)果精確到個位).(參考數(shù)據(jù):sin45°≈0.71,cos65°≈0.42,tan65°≈2.14.)
查看答案和解析>>
科目: 來源: 題型:
【題目】下表是2018年三月份某居民小區(qū)隨機抽取20戶居民的用水情況:
月用水量/噸 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
戶數(shù) | 2 | 4 | m | 4 | 3 | 0 | 1 |
(1)求出m= ,補充畫出這20戶家庭三月份用電量的條形統(tǒng)計圖;
(2)據(jù)上表中有關信息,計算或找出下表中的統(tǒng)計量,并將結(jié)果填入表中:
統(tǒng)計量名稱 | 眾數(shù) | 中位數(shù) | 平均數(shù) |
數(shù)據(jù) |
|
|
|
(3)為了倡導“節(jié)約用水,綠色環(huán)保”的意識,江贛市自來水公司實行“梯級用水、分類計費”,價格表如下:
月用水梯級標準 | Ⅰ級(30噸以內(nèi)) | Ⅱ級(超過30噸的部分) |
單價(元/噸) | 2.4 | 4 |
如果該小區(qū)有500戶家庭,根據(jù)以上數(shù)據(jù),請估算該小區(qū)三月份有多少戶家庭達到Ⅱ級標準?并估算這些Ⅱ級用水戶的總水費是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等邊三角形ABC的外側(cè)作直線AP,點C關于直線AP的對稱點為點D,連接AD,BD,其中BD交直線AP于點E.
(1)依題意補全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);
(3)連結(jié)CE,寫出AE, BE, CE之間的數(shù)量關系,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AD平分∠BAC,DE⊥AB于點E,DF⊥AC于點F,且BD=CD.
(1)圖中與△BDE全等的三角形是 ,請加以證明;
(2)若AE=6 cm,AC=4 cm,求BE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點P與圖形W,若點Q為圖形W上任意一點,點Q關于第一、三象限角平分線的對稱點為Q,且線段PQ,的中點為M(m,0),則稱點P是圖形W關于點M(m,0)的“關聯(lián)點”.
(1)如圖1,若點P是點Q(0,)關于原點的關聯(lián)點,則點P的坐標為 ;
(2)如圖2,在△ABC中,A(2,2),B(-2,0),C(0,-2),
①將線段AO向右平移d(d>0)個單位長度,若平移后的線段上存在兩個△ABC關于點(2,0)的關聯(lián)點,則d的取值范圍是 .
②已知點S(n+2,0)和點T(n+4,0),若線段ST上存在△ABC關于點N(n,0)的關聯(lián)點,求n的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,AB=BC,∠ABC=120°,點E是AC上一點,連接BE,且∠BEC=50°,D為點B關于直線AC的對稱點,連接CD,將線段EB繞點E順時針旋轉(zhuǎn)40°得到線段EF,連接DF.
(1)請你在下圖中補全圖形;
(2)請寫出∠EFD的大小,并說明理由;
(3)連接CF,求證:DF=CF.
查看答案和解析>>
科目: 來源: 題型:
【題目】在不透光的布袋里放入標有數(shù)字2,0,﹣3的三張的卡片(形狀與質(zhì)地完全相同).現(xiàn)在隨機地抽出兩張卡片,將兩個數(shù)字分別記作某個點的橫坐標與縱坐標.
(1)從布袋中同時抽取兩張卡片時組成的所有點中,直接寫出“點落入第四象限”概率是 ;
(2)如果抽出第一張卡片記錄數(shù)字后放回布袋,再從袋中抽取第二張卡片記錄數(shù)字后組成一個點,用畫樹狀圖或列表法,求出“點落在坐標軸上”的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于多項式Ax2bxc(b、c為常數(shù)),作如下探究:
(1)不論x取何值,A都是非負數(shù),求b與c滿足的條件;
(2)若A是完全平方式,
①當c=9時,b= ;當b=3時,c= ;
②若多項式Bx2dxc與A有公因式,求d的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com