科目: 來源: 題型:
【題目】如圖,直線,與和分別相切于點和點.點和點分別是和上的動點,沿和平移.的半徑為,.下列結(jié)論錯誤的是( )
A. B. 和的距離為
C. 若,則與相切 D. 若與相切,則
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1),已知,為的角平分線上一點,連接,;如圖(2),已知,,為的角平分線上兩點,連接,,,;如圖(3),已知,,,為的角平分線上三點,連接,,,,,;……,依此規(guī)律,第6個圖形中有全等三角形的對數(shù)是( )
A.21B.11C.6D.42
查看答案和解析>>
科目: 來源: 題型:
【題目】(模型建立)
(1)如圖1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過點C,過點A作AD⊥ED于點D,過點B作BE⊥ED于點E,求證:△BEC≌△CDA;
(模型應(yīng)用)
(2)如圖2,已知直線11:y=2x+3與x軸交于點A、與y軸交于點B,將直線11繞點A逆時針旋轉(zhuǎn)45°至直線12;求直線12的函數(shù)表達(dá)式;
(3)如圖3,平面直角坐標(biāo)系內(nèi)有一點B(3,-4),過點B作BA⊥x軸于點A、BC⊥y軸于點C,點P是線段AB上的動點,點D是直線y=-2x+1上的動點且在第四象限內(nèi).試探究△CPD能否成為等腰直角三角形?若能,求出點D的坐標(biāo),若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】課外興趣小組活動時,老師提出了如下問題:
如圖,在中,若,,求邊上的中線的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長到,使得,再連接(或?qū)?/span>繞點逆時針旋轉(zhuǎn)得到),把、、集中在中,利用三角形的三邊關(guān)系可得,則.
[感悟]解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.
解決問題:受到的啟發(fā),請你證明下列命題:如圖,在中,是邊上的中點,,交于點,交于點,連接.求證:,若,探索線段、、之間的等量關(guān)系,并加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】小華同學(xué)對圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進(jìn)行了拓展探究.
(一)猜測探究
在△ABC中,AB=AC,M是平面內(nèi)任意一點,將線段AM繞點A按順時針方向旋轉(zhuǎn)與∠BAC相等的角度,得到線段AN,連接NB.
(1)如圖1,若M是線段BC上的任意一點,請直接寫出∠NAB與∠MAC的數(shù)量關(guān)系是_______,NB與MC的數(shù)量關(guān)系是_______;
(2)如圖2,點E是AB延長線上點,若M是∠CBE內(nèi)部射線BD上任意一點,連接MC,(1)中結(jié)論是否仍然成立?若成立,請給予證明,若不成立,請說明理由。
(二)拓展應(yīng)用
如圖3,在△A1B1C1中,A1B1=8,∠A1B1C1=90°,∠C1=30°,P是B1C1上的任意點,連接A1P,將A1P繞點A1按順時針方向旅轉(zhuǎn)60°,得到線段A1Q,連接B1Q.求線段B1Q長度的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】期末,學(xué)校為了調(diào)查這學(xué)期學(xué)生課外閱讀情況,隨機抽樣調(diào)查了一部分學(xué)生閱讀課外書的本數(shù),并將收集到的數(shù)據(jù)整理成如圖的統(tǒng)計圖.
(1)這次一共調(diào)查的學(xué)生人數(shù)是_______人;
(2)所調(diào)查學(xué)生讀書本數(shù)的眾數(shù)是_______本,中位數(shù)是_______本.
(3)若該校有800名學(xué)生,請你估計該校學(xué)生這學(xué)期讀書總數(shù)是多少本?
查看答案和解析>>
科目: 來源: 題型:
【題目】小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時間x(分)之間的函數(shù)圖象如圖所示.
(1)求小張騎自行車的速度;
(2)求小張停留后再出發(fā)時y與x之間的函數(shù)表達(dá)式;
(3)求小張與小李相遇時x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com