科目: 來源: 題型:
【題目】△ABC中,∠B=90°,AB=9,BC=12,點p從點A開始延邊AB向點B以1cm/s的速度移動,與此同時,點Q從點B開始沿邊BC向點C以2cm/s的速度移動。如果P.Q分別從A.B同時出發(fā),當(dāng)點Q運(yùn)動到點C時,兩點停止運(yùn)動,問:
(1)填空:BQ=______,PB=______(用含t的代數(shù)式表示)
(2)經(jīng)過幾秒,PQ的長為 cm?
(3)經(jīng)過幾秒,的面積等于?
查看答案和解析>>
科目: 來源: 題型:
【題目】我國古代數(shù)學(xué)家趙爽曾用圖1證明了勾股定理,這個圖形被稱為“弦圖”.2002年在北京召開的國際數(shù)學(xué)家大會(ICM 2002)的會標(biāo)(圖2),其圖案正是由“弦圖”演變而來.“弦圖”是由4個全等的直角三角形與一個小正方形組成,恰好拼成一個大正方形請你根據(jù)圖1解答下列問題:
(1)敘述勾股定理(用文字及符號語言敘述);
(2)證明勾股定理;
(3)若大正方形的面積是,小正方形的面積是,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為了解九年級名學(xué)生的體育綜合素質(zhì),隨機(jī)抽查了名學(xué)生進(jìn)行體育綜合測試,所得成績整理分成五組,并制成如下頻數(shù)分布表和扇形統(tǒng)計圖。
頻數(shù)分布表:
組別 | 成績(分) | 頻數(shù) |
請你根據(jù)以上圖表提供的信息,解答下列問題:
(1)頻數(shù)分布表中的 ;
(2)扇形統(tǒng)計圖中,組所對應(yīng)的扇形圓心角的度數(shù)是_ 度.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖, 在.
(1)用尺規(guī)作圖方法,按要求作圖:
①作的高;
②作的平分線,分別交于點;
(要求:保留作圖痕跡,不寫作法和證明)
(2)求證:點在的垂直平分線.上; .
(3)在(1)所作的圖中,探究線段AE與BF的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AC是直徑,∠A=30°,BC=4,點D是AB的中點,連接DO并延長交⊙O于點P.
(1)求劣弧PC的長(結(jié)果保留π);
(2)過點P作PF⊥AC于點F,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目: 來源: 題型:
【題目】水果店張阿姨以每斤2元的利潤出售一種水果,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.2元,每天可多售出40斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是________斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天贏利300元,張阿姨需將這種水果每斤的售價降低多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1, 和均為等邊三角形,點在同一直線上,連接
①求證:; ②求的度數(shù).
(2)拓展探究:如圖2, 和均為等腰直角三角形,,點在同一直線上為中邊上的高,連接
①求的度數(shù):
②判斷線段之間的數(shù)量關(guān)系(直接寫出結(jié)果即可).
解決問題:如圖3,和均為等腰三角形,,點在同一直線上,連接.求的度數(shù)(用含的代數(shù)式表示,直接寫出結(jié)果即可).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC.
(1)求點A、C的坐標(biāo);
(2)將△ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖②);
(3)在坐標(biāo)平面內(nèi),是否存在點P(除點B外),使得△APC與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC的三邊分別切⊙O于D,E,F(xiàn).
(1)若∠A=40°,求∠DEF的度數(shù);
(2)AB=AC=13,BC=10,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠C=90°.
(1)用直尺和圓規(guī)作⊙O,使它經(jīng)過A、B、D三點(保留作圖痕跡);
(2)點C是否在⊙O上?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com