科目: 來源: 題型:
【題目】黃巖某校搬遷后,需要增加教師和學(xué)生的寢室數(shù)量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.
(1)若2018年學(xué)校寢室數(shù)為64個,以后逐年增加,預(yù)計2020年寢室數(shù)達到121個,求2018至2020年寢室數(shù)量的年平均增長率;
(2)若三類不同的寢室的總數(shù)為121個,則最多可供多少師生住宿?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AC上,DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF、EF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成2017年6月份的快遞投遞任務(wù)?如果不能,請問至少需要增加幾名業(yè)務(wù)員?
查看答案和解析>>
科目: 來源: 題型:
【題目】點P(a,b)是直線y=-x-5與雙曲線的一個交點,則以a、b兩數(shù)為根的一元二次方程是( ).
A. x2-5x+6=0 B. x2+5x+6=0 C. x2-5x-6="0" D. x2+5x-6=0
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結(jié)論:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中結(jié)論正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,是以為斜邊的等腰直角三角形,為的中點,點、、分別為線段,,上的一點,以為直角頂點的等腰直角三角形,,連結(jié).
(1)當(dāng)與點重合時,求的長.
(2)當(dāng)時,求的面積.
(3)①比較與的面積大小關(guān)系,并說明理由.
②當(dāng)的面積為6時,求的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,已知為正方形的中心,分別延長到點, 到點,使, ,連結(jié),將△繞點逆時針旋轉(zhuǎn)角得到△(如圖2).連結(jié)、.
(Ⅰ)探究與的數(shù)量關(guān)系,并給予證明;
(Ⅱ)當(dāng), 時,求:
①的度數(shù);
②的長度.
查看答案和解析>>
科目: 來源: 題型:
【題目】用若干個小立方塊搭成一個幾何體,使它從正面看與從左面看都是如圖的同一個圖.通過實際操作,并與同學(xué)們討論,解決下列問題:
(1)所需要的小立方塊的個數(shù)是多少?你能找出幾種?
(2)畫出所需個數(shù)最少和所需個數(shù)最多的幾何體從上面看到的圖,并在小正方形里注明在該位置上小立方塊的個數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】在一個三角形中,如果一個角是另一個角的3倍,這樣的三角形我們稱之為“靈動三角形”.如,三個內(nèi)角分別為120°,40°,20°的三角形是“靈動三角形”.
如圖,∠MON=60°,在射線OM上找一點A,過點A作AB⊥OM交ON于點B,以A為端點作射線AD,交線段OB于點C(規(guī)定0°< ∠OAC < 90°).
(1)∠ABO的度數(shù)為 °,△AOB (填“是”或“不是”靈動三角形);
(2)若∠BAC=60°,求證:△AOC為“靈動三角形”;
(3)當(dāng)△ABC為“靈動三角形”時,求∠OAC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com