科目: 來源: 題型:
【題目】以下說法合理的是( )
A. 小明在10次拋圖釘?shù)脑囼炛邪l(fā)現(xiàn)3次釘朝上,由此他說釘尖朝上的概率是30%
B. 拋擲一枚普通的正六面體骰子,出現(xiàn)6的概率是的意思是每6次就有1次擲得6
C. 某彩票的中獎機會是2%,那么如果買100張彩票一定會有2張中獎
D. 在一次課堂進行的拋擲硬幣試驗中,某同學估計硬幣落地后,正面朝上的概率為
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線的解析式;
(2)當點P運動到什么位置時,△PAB的面積有最大值?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經(jīng)過點M,N.
(1)求反比例函數(shù)的解析式;
(2)若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC 中,AB 為半圓 O 的直徑,AC、BC 分別交半圓 O 于點 E、D,且 BD=DE.
(1)求證:點 D 是 BC 的中點.
(2)若點 E 是 AC 的中點,判斷△ABC 的形狀,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點 O 是△ABC 的邊 AB 上一點,以 OB 為半徑的⊙O 交 BC 于點 D,過點 D 的切線交 AC 于點 E,且 DE⊥AC.
(1)證明:AB=AC;
(2)設(shè) AB=cm,BC=2cm,當點 O 在 AB 上移動到使⊙O 與邊 AC 所在直線相切時, 求⊙O 的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】知識儲備
如圖①,點E、F分別是y=3和y=﹣1上的動點,則EF的最小值是 ;
方法儲備
直角坐標系的建立,在代數(shù)和幾何之間架起了一座橋梁,用代數(shù)的方法解決幾何問題:某數(shù)學小組在自主學習時了解了三角形的中位線及相關(guān)的定理,在學習了《坐標與位置)后,該小組同學深入思考,利用中點坐標公式,給出了三角形中位線定理的一種證明方法.如圖②,在△ABC中,點D,E分別是AB,AC邊的中點,DE稱為△ABC的中位線,則DE∥BC且DE=BC.該數(shù)學小組建立如圖③的直角坐標系,設(shè)點A(a,b),點C (0,c)(c>0).請你利用該數(shù)學學習小組的思路證明DE∥BC且DE=BC.(提示:中點坐標公式,A(x1,y1),B(x2,y2),則A,B中點坐標為(,).
綜合應用
結(jié)合上述知識和方法解決問題,如圖④,在△ABC中,∠ACB=90°,AC=3,BC=6,延長AC至點 D.DE⊥AD,連接EC并延長交AB邊于點F.若2CD+DE=6,則EF是否存在最小值,若存在,求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點C(0,6)的直線AC與直線OA相交于點A(4,2),動點M在線段OA和射線AC上運動,試解決下列問題:
(1)求直線AC的解析式;
(2)求△OAC的面積;
(3)是否存在點M、使△OMC的面積是△OAC的面積的?若存在,求出此時點M的坐標;若不存在,請說明理由?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知A、B兩地相距300千米,甲、乙兩車同時從A地出發(fā),以各自的速度勻速向B地行駛.甲車先到達B地,停留1小時后,速度不變,按原路返回.設(shè)兩車行駛的時間是x小時,離開A地的距離是y千米,如圖是y與x的函數(shù)圖象.
(1)甲車的速度是 ,乙車的速度是 ;
(2)甲車在返程途中,兩車相距20千米時,求乙車行駛的時間.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com