科目: 來源: 題型:
【題目】如圖,直線AP的解析式y=kx+4k分別交于x軸、y軸于A、C兩點,與反比例函數(shù)y=(x>0)交于點P.且PB⊥x軸于B點,S△PAB=9.
(1)求一次函數(shù)解析式;
(2)點Q是x軸上的一動點,當QC+QP的值最小時,求Q點坐標;
(3)設點R與點P同在反比例函數(shù)的圖象上,且點R在直線PB的右側,作RT⊥x軸于T點,交AC于點M,是否存在點R,使得△BTM與△AOC全等?若存在,求點R的坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知函數(shù)y=x+2的圖象與函數(shù)y=(k≠0)的圖象交于A、B兩點,連接BO并延長交函數(shù)y=(k≠0)的圖象于點C,連接AC,若△ABC的面積為8.則k的值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)y=和y=在第一象限內(nèi)的圖象如圖,點P是y=的圖象上一動點,PC⊥x軸于點C,交y=的圖象于點B.給出如下結論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積大小不會發(fā)生變化;④CA=AP.其中所有正確結論的序號是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點坐標為A(-2,3),B(-3,2),C(-1,1).
(1)若將△ABC向右平移3個單位長度,再向上平移1個單位長度,請畫出平移后的△A1B1C1;
(2)畫出△A1B1C1繞原點旋轉180°后得到的△A2B2C2;
(3)△A'B'C'與△ABC是位似圖形,請寫出位似中心的坐標:______;
(4)順次連接C,C1,C',C2,所得到的圖形是軸對稱圖形嗎?
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,已知點A(-2,0),點B(0,4),點E在OB上,且∠OAE=∠OBA.
(1)如圖①,求點E的坐標
(2)如圖②,將△AEO沿x軸向右平移得到△A′E′O′,連接A′B,BE′.
①設AA′=m,其中0<m<2,試用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時點E′的坐標;
②當A′B+BE′取得最小值時,求點E′的坐標(直接寫出結果即可).
查看答案和解析>>
科目: 來源: 題型:
【題目】在研究相似問題時,甲、乙同學的觀點如下:
甲:將邊長為3、4、5的三角形按圖1的方式向外擴張,得到新三角形,它們的對應邊間距為1,則新三角形與原三角形相似.
乙:將鄰邊為3和5的矩形按圖2的方式向外擴張,得到新的矩形,它們的對應邊間距均為1,則新矩形與原矩形不相似.
對于兩人的觀點,下列說法正確的是( )
A. 兩人都對 B. 兩人都不對 C. 甲對,乙不對 D. 甲不對,乙對
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,則下列結論正確的是( )
A. ∠E=2∠K B. BC=2HI C. 六邊形ABCDEF的周長=六邊形GHIJKL的周長 D. S六邊形ABCDEF=2S六邊形GHIJKL
查看答案和解析>>
科目: 來源: 題型:
【題目】某種蔬菜的銷售單價y1與銷售月份x之間的關系如圖1所示,成本y2與銷售月份x之間的關系如圖2所示(圖1的圖象是線段,圖2的圖象是拋物線)
(1)已知6月份這種蔬菜的成本最低,此時出售每千克的收益是多少元?(收益=售價﹣成本)
(2)哪個月出售這種蔬菜,每千克的收益最大?簡單說明理由.
(3)已知市場部銷售該種蔬菜4、5兩個月的總收益為22萬元,且5月份的銷售量比4月份的銷售量多2萬千克,求4、5兩個月的銷售量分別是多少萬千克?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的頂點為,經(jīng)過原點且與軸另一交點為.
求點的坐標;
若為等腰直角三角形,求拋物線的解析式;
現(xiàn)將拋物線繞著點旋轉后得到拋物線,若拋物線的頂點為,當,且頂點在拋物線上時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com