科目: 來源: 題型:
【題目】閱讀下面的解答過程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4-(y+2)2+4,∵(y+2)2≥0,∴(y+2)2+4≥4,∴y2+4y+8的最小值為4.仿照上面的解答過程,求x2-x+4的最小值和6-2x-x2的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】關于x的方程(k﹣1)x2+2kx+2=0.
(1)求證:無論k為何值,方程總有實數(shù)根.
(2)設x1,x2是方程(k﹣1)x2+2kx+2=0的兩個根,記,S的值能為2嗎?若能,求出此時k的值;若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在關于x的分式方程 ①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均為實數(shù),方程①的根為非負數(shù).
(1)求k的取值范圍;
(2)當方程②有兩個整數(shù)根x1、x2,k為整數(shù),且k=m+2,n=1時,求方程②的整數(shù)根;
(3)當方程②有兩個實數(shù)根x1、x2,滿足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k為負整數(shù)時,試判斷|m|≤2是否成立?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】給出下列說法,其中正確的是( )
①關于的一元二次方程,若,則方程一定沒有實數(shù)根;
②關于的一元二次方程,若,則方程必有實數(shù)根;
③若是方程的根,則;
④若,,為三角形三邊,方程有兩個相等實數(shù)根,則該三角形為直角三角形.
A. ①② B. ①④ C. ①②④ D. ①③④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線與軸、軸分別相交于點A(-1,0)和B(0,3),其頂點為D.
(1)求這條拋物線的解析式;
(2)若拋物線與軸的另一個交點為E,求△ODE的面積;
(3)拋物線的對稱軸上是否存在點P使得△PAB的周長最短.若存在請求出點P的坐標,若不存在說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點O為圓心的圓,經過A、B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF=,求⊙O的半徑;
(3)若∠ADB=60°,BD=1,求陰影部分的面積.(結果保留根號)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△AOB的三個頂點都在網格的格點上,網格中的每個小正方形的邊長均為一個長度單位, 以點O建立平面直角坐標系,若△AOB繞點O逆時針旋轉90后,得到△A1OB1(A和A1是對應點)
(1)畫出△A1OB1;
(2)寫出點A1,B1的坐標;
(3)求旋轉過程中邊OB掃過的面積(結果保留π).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,DE交AC于點E,且∠A=∠ADE.
(1)求證:DE是⊙O的切線;
(2)若AD=16,DE=10,求BC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點,與y軸相交于點C(0,﹣3).
(1)求這個二次函數(shù)的表達式;
(2)若P是第四象限內這個二次函數(shù)的圖象上任意一點,PH⊥x軸于點H,與BC交于點M,連接PC.
①求線段PM的最大值;
②當△PCM是以PM為一腰的等腰三角形時,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com