科目: 來源: 題型:
【題目】為推進垃圾分類,推動綠色發(fā)展,某工廠購進甲、乙兩種型號的機器人用來進行垃圾分類,甲型機器人比乙型機器人每小時多分20kg,甲型機器人分類800kg垃圾所用的時間與乙型機器人分類600kg垃圾所用的時間相等。
(1)兩種機器人每小時分別分類多少垃圾?
(2)現(xiàn)在兩種機器人共同分類700kg垃圾,工作2小時后甲型機器人因機器維修退出,求甲型機器人退出后乙型機器人還需工作多長時間才能完成?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖ABCD是一個矩形桌子,一小球從P撞擊到Q,反射到R,又從R反射到S,從S反射回原處P,入射角與反射角相等(例如∠PQA=∠RQB等),已知AB=9,BC=12,BR=4.則小球所走的路徑的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,小明同學觀察得出了下面幾條信息:①b2﹣4ac>0;②abc<0;③;④b2=4a(c﹣1);⑤關于x的一元二次方程ax2+bx+c=3無實數(shù)根,共中信息錯誤的個數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目: 來源: 題型:
【題目】圖1是一個地鐵站入口的雙翼閘機.如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機側立面夾角∠PCA=∠BDQ=30°.當雙翼收起時,可以通過閘機的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線與軸交于、兩點,與軸交于點,直線交拋物線于點,并且,,.
(1)求拋物線的解析式;
(2)已知點為拋物線上一動點,且在第二象限,順次連接點、、、,求四邊形面積的最大值;
(3)在(2)中四邊形面積最大的條件下,過點作直線平行于軸,在這條直線上是否存在一個以點為圓心,為半徑且與直線相切的圓?若存在,求出圓心的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):
如圖1,在和中,,,,連接,交于點.
填空:①的值為 ;②的度數(shù)為 .
(2)類比探究:如圖2,在和中,,,,連接交的延長線于點.請求出的值及的度數(shù),并說明理由;
(3)拓展延伸:在(2)的條件下,將繞點在平面內旋轉,、所在直線交于點,若,,請直接寫出當點與點重合時的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,旗桿AB的頂端B在夕陽的余輝下落在一個斜坡上的點D處,某校數(shù)學課外興趣小組的同學正在測量旗桿的高度,在旗桿的底部A處測得點D的仰角為15°,AC=10米,又測得∠BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(,結果精確到個位).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與反比例函數(shù)的圖象交于,兩點(點在點左側),已知點的縱坐標是2.
(1)求反比例函數(shù)的表達式;
(2)點上方的雙曲線上有一點,如果的面積為30,直線的函數(shù)表達式.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠計劃生產兩種產品共60件,需購買甲、乙兩種材料.生產一件產品需甲種材料4千克;生產一件產品需甲、乙兩種材料各3千克.經測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元.
(1)甲、乙兩種材料每千克分別是多少元?
(2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不超過9900元,且生產產品不少于38件,問符合生產條件的生產方案有哪幾種?
(3)在(2)的條件下,若生產一件產品需加工費40元,生產一件產品需加工費50元,應選擇哪種生產方案,使生產這60件產品的成本最低(成本=材料費+加工費)?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知, , 與成正比例, 與成反比例,并且當時, ,當時, .
()求關于的函數(shù)關系式.
()當時,求的值.
【答案】();(), .
【解析】分析:(1)首先根據(jù)與x成正比例, 與x成反比例,且當x=1時,y=4;當x=2時,y=5,求出 和與x的關系式,進而求出y與x的關系式,(2)根據(jù)(1)問求出的y與x之間的關系式,令y=0,即可求出x的值.
本題解析:
()設, ,
則,
∵當時, ,當時, ,
∴
解得, ,
∴關于的函數(shù)關系式為.
()把代入得,
,
解得: , .
點睛:本題考查了用待定系數(shù)法求反比例函數(shù)的解析式:(1)設出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=kx(k為常數(shù),k≠0);(2)把已知條件(自變量與對應值)代入解析式,得到待定系數(shù)的方程;(3)解方程,求出待定系數(shù);(4)寫出解析式.
【題型】解答題
【結束】
24
【題目】如圖,菱形的對角線、相交于點,過點作且,連接、,連接交于點.
(1)求證:;
(2)若菱形的邊長為2, .求的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com