科目: 來源: 題型:
【題目】 某學(xué)校為了了解九年級學(xué)生的體能情況,抽取了部分學(xué)生進(jìn)行了體能測試,學(xué)生的測試成績分四類:A:優(yōu)秀;B:良好;C:合格;D不合格,將抽測學(xué)生的成績繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù);
(2)成績?yōu)?/span>C的女生有______人,成績?yōu)?/span>D的男生有______人;
(3)扇形統(tǒng)計(jì)圖中成績?yōu)?/span>D的學(xué)生所對應(yīng)的扇形的圓心角度數(shù)為______;
(4)補(bǔ)全條形統(tǒng)計(jì)圖.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,中,,,點(diǎn),分別在邊,上,且,連接,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),線段的長為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】平行四邊形ABCD中,E,F是對角線BD上的兩點(diǎn), 如果添加一個(gè)條件使△ABE≌△CDF,則添加的條件不能是( 。
A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=x2+bx+c經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D為直線AC上方拋物線上一動點(diǎn);
①連接BC、CD,設(shè)直線BD交線段AC于點(diǎn)E,△CDE的面積為S1, △BCE的面積為S2, 求的最大值;
②過點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,連接CD,是否存在點(diǎn)D,使得△CDF中的某個(gè)角恰好等于∠BAC的2倍?若存在,求點(diǎn)D的橫坐標(biāo);若不存在,請說明理由
查看答案和解析>>
科目: 來源: 題型:
【題目】(14分)如圖1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點(diǎn)B在線段AE上,點(diǎn)C在線段AD上.
(1)請直接寫出線段BE與線段CD的關(guān)系: ;
(2)如圖2,將圖1中的△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(0<α<360°),
①(1)中的結(jié)論是否成立?若成立,請利用圖2證明;若不成立,請說明理由;
②當(dāng)AC=ED時(shí),探究在△ABC旋轉(zhuǎn)的過程中,是否存在這樣的角α,使以A、B、C、D四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出角α的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著生活水平的提高,人們對飲水品質(zhì)的需求越來越高,某公司根據(jù)市場需求代理A,B兩種型號的凈水器,每臺A型凈水器比每臺B型凈水器進(jìn)價(jià)多200元,用5萬元購進(jìn)A型凈水器與用4.5萬元購進(jìn)B型凈水器的數(shù)量相等
(1)求每臺A型、B型凈水器的進(jìn)價(jià)各是多少元?
(2)該公司計(jì)劃購進(jìn)A,B兩種型號的凈水器共50臺進(jìn)行試銷,其中A型凈水器為x臺,購買資金不超過9.8萬元,試銷時(shí)A型凈水器每臺售價(jià)2500元,B型凈水器每臺售價(jià)2180元,公司決定從銷售A型凈水器的利潤中按每臺捐獻(xiàn)a元作為公司幫扶貧困村飲水改造資金.若公司售完50臺凈水器并捐獻(xiàn)扶貧資金后獲得的最大利潤不低于20200元但不超過23000元,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)生為測量一棵大樹AH及其樹葉部分AB的高度,將測角儀放在F處測得大樹頂端A的仰角為30°,放在G處測得大樹頂端A的仰角為60°,樹葉部分下端B的仰角為45°,已知點(diǎn)F、G與大樹底部H共線,點(diǎn)F、G相距15米,測角儀高度為1.5米.求該樹的高度AH和樹葉部分的高度AB.
查看答案和解析>>
科目: 來源: 題型:
【題目】某報(bào)社為了解市民對大范圍霧霾天氣的成因、影響以及應(yīng)對措施的看法,做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個(gè)等級:.非常了解;.比較了解;.基本了解;.不了解,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪了不完整的兩種統(tǒng)計(jì)圖表.請結(jié)合統(tǒng)計(jì)圖表,回答下列問題:
(1)本次參與調(diào)查的市民共有 人, , ;
(2)統(tǒng)計(jì)圖中扇形的圓心角是 度,并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)某中學(xué)準(zhǔn)備開展關(guān)于霧霾的知識競賽,九(3)班班主任欲從2名男生和3名女生中任選2人參加比賽,求恰好選中“1男1女”的概率.(要求列表或畫樹狀圖)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中有一個(gè)正六邊形EFGHIJ,其頂點(diǎn)均在矩形的邊上,邊EJ和邊GH分別在矩形的邊AD和BC上,則=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,若點(diǎn)M是軸正半軸上任意一點(diǎn),過點(diǎn)M作PQ∥軸,分別交函數(shù)和的圖象于點(diǎn)P和Q,連接OP和OQ.則下列結(jié)論正確的是( )
A.∠POQ不可能等于90°B.
C.這兩個(gè)函數(shù)的圖象一定關(guān)于軸對稱D.△POQ的面積是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com