科目: 來源: 題型:
【題目】如圖,直線y=-x+2與x軸交于點B,與y軸交于點C,已知二次函數(shù)的圖象經(jīng)過點B,C和點A(-1,0).
(1)求B,C兩點的坐標(biāo).
(2)求該二次函數(shù)的解析式.
(3)若拋物線的對稱軸與x軸的交點為點D,則在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出點P的坐標(biāo);如果不存在,請說明理由.
(4)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時點E的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】我們學(xué)習(xí)了勾股定理后,都知道“勾三、股四、弦五”.
觀察:3、4、5;5、12、13;7、24、25;9、40、41;…,發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過.
(1)請你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):________.
(2)若第一個數(shù)用字母n(n為奇數(shù),且n≥3)表示,那么后兩個數(shù)用含n的代數(shù)式分別表示為________和________,請用所學(xué)知識說明它們是一組勾股數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與點B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC.其中所有正確結(jié)論的序號是________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知下列命題:①若=-a,則a≤0;②若a>,則a2>b2;③兩個位似圖形一定是相似圖形;④平行四邊形的兩組對邊分別相等.其中原命題與逆命題均為真命題的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,在中,,.點分別是邊上的動點,連接.設(shè)(),,與之間的函數(shù)關(guān)系如圖②所示.
(1)求出圖②中線段所在直線的函數(shù)表達(dá)式;
(2)將沿翻折,得.
①點是否可以落在的某條角平分線上?如果可以,求出相應(yīng)的值;如果不可以,說明理由;
②直接寫出與重疊部分面積的最大值及相應(yīng)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,在中,點分別在上,且.設(shè)的邊上的高為,的邊上的高為.
(1)若、的面積分別為3,1,則 ;
(2)設(shè)、、四邊形的面積分別為,求證:;
(3)如圖②,在中,點分別在上,點在上,且, . 若、、的面積分別為3, 7, 5,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,己知拋物線與軸相交于點,其對稱軸與拋物線相交于點,與軸相交于點.
(1)求的長;
(2)平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點為.若新拋物線經(jīng)過原點,且,求新拋物線對應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校為了防控新型冠狀病毒,購買了甲、乙兩種消毒液進(jìn)行校園環(huán)境消毒.己知學(xué)校第一次購買了甲種消毒液40瓶和乙種消毒液60瓶,共花費3 600元;第二次購買了甲種消毒液60瓶和乙種消毒液40瓶,共花費3 400元.
(1)每瓶甲種消毒液和每瓶乙種消毒液的價格分別是多少元?
(2)學(xué)校準(zhǔn)備第三次購買這兩種消毒液,其中甲種消毒液比乙種消毒液多10瓶,并且總花費不超過3 500元,最多能購買多少瓶甲種消毒液?
查看答案和解析>>
科目: 來源: 題型:
【題目】學(xué)校隨機(jī)抽取部分學(xué)生就“你是否喜歡網(wǎng)課”進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果進(jìn)行統(tǒng)計后,繪制成如下統(tǒng)計表和扇形統(tǒng)計圖.
(1)在統(tǒng)計表中, , ;
(2)求出扇形統(tǒng)計圖中“喜歡”網(wǎng)課所對應(yīng)扇形的圓心角度數(shù);
(3)己知該校共有2 000名學(xué)生,試估計該校“非常喜歡”網(wǎng)課的學(xué)生有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com