科目: 來源: 題型:
【題目】如圖(1),在平面直角坐標系中,點,點,點從點出發(fā),沿以1個單位每秒的速度勻速運動,同時點從點出發(fā),沿軸正方向以2個單位每秒的速度勻速運動.,交于點,交軸于點.當點到達點時,兩點同時停止運動,設運動的時間為秒.在整個運動過程中,設與的重疊部分的面積為.
(1)求當為何值時,點與點、在同一直線上;
(2)求關于的函數關系式;
(3)在圖(3)中畫出關于的函數圖象,直接寫出的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,與軸交于點C,與軸的正半軸交于點K,過點作軸交拋物線于另一點B,點在軸的負半軸上,連結交軸于點A,若.
(1)用含的代數式表示的長;
(2)當時,判斷點是否落在拋物線上,并說明理由;
(3)過點作軸交軸于點延長至,使得連結交軸于點連結AE交軸于點若的面積與的面積之比為則求出拋物線的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市在黨中央實施“精準扶貧”政策的號召下,大力開展科技扶貧工作,幫助農民組建農副產品銷售公司,某農副產品的年產量不超過100萬件,該產品的生產費用y(萬元)與年產量x(萬件)之間的函數圖象是頂點為原點的拋物線的一部分(如圖①所示);該產品的銷售單價z(元/件)與年銷售量x(萬件)之間的函數圖象是如圖②所示的一條線段,生產出的產品都能在當年銷售完,達到產銷平衡,所獲毛利潤為w萬元.(毛利潤=銷售額﹣生產費用)
(1)請直接寫出y與x以及z與x之間的函數關系式;
(2)求w與x之間的函數關系式;并求年產量多少萬件時,所獲毛利潤最大?最大毛利潤是多少?
(3)由于受資金的影響,今年投入生產的費用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,Rt△ABC中,∠C=90°,AB=15,BC=9,點D,E分別在AC,BC上,CD=4 x,CE=3x,其中0<x<3.
(1)求證:DE∥AB;
(2)當x=1時 ,求點E到AB的距離;
(3) 將△DCE繞點E逆時針方向旋轉,使得點D落在AB邊上的D′處. 在旋轉的過程中,若點D′的位置有且只有一個,求x的取值范圍.
圖1 備用圖1 備用圖2
查看答案和解析>>
科目: 來源: 題型:
【題目】近幾年購物的支付方式日益增多,某數學興趣小組就此進行了抽樣調查.調查結果顯示,支付方式有:A微信、B支付寶、C現金、D其他,該小組對某超市一天內購買者的支付方式進行調查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.
請你根據統(tǒng)計圖提供的信息,解答下列問題:
(1)本次一共調查了多少名購買者?
(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為 度.
(3)若該超市這一周內有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BO在x軸的負半軸上,,頂點C的坐標為,x反比例函數的圖象與菱形對角線AO交于點D,連接BD,當軸時,k的值是______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線經過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.
(1)求該拋物線所表示的二次函數的表達式;
(2)已知點F(0,),當點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?
(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉,它的兩邊分別交CB、DC(或它們的延長線)于點M、N.
(1)當∠MAN繞點A旋轉到BM=DN時(如圖1),請你直接寫出BM、DN和MN的數量關系:__________.
(2)當∠MAN繞點A旋轉到BM≠DN時(如圖2),(1)中的結論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.
(3)當∠MAN繞點A旋轉到如圖3的位置時,線段BM、DN和MN之間又有怎樣的數量關系?請寫出直接寫出結論.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲,乙兩輛汽車分別從A,B兩地同時出發(fā),沿同一條公路相向而行,乙車出發(fā)2h后休息,與甲車相遇后,繼續(xù)行駛.設甲,乙兩車與B地的路程分別為y甲(km),y乙 (km),行駛的時間為x(h),y甲,y乙與x之間的函數圖象如圖所示,結合圖象解答下列問題:
(1)乙車休息了多長時間;
(2)求乙車與甲車相遇后y乙與x的函數解析式,并寫出自變量x的取值范圍;
(3)當兩車相距40km時,求出x的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com