科目: 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達終點時,甲離終點還有300米
其中正確的結(jié)論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=( 。
A. 1 B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線,經(jīng)過點、,過點作軸的平行線交拋物線于另一點.
(1)求拋物線的表達式及其頂點坐標;
(2)如圖,點是第一象限中上方拋物線上的一個動點,過點作于點,作軸于點,交于點,在點運動的過程中,的周長是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由;
(3)如圖,連接,在軸上取一點,使和相似,請求出符合要求的點坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知如圖1,在△ABC中,∠ACB=90°,BC=AC,點D在AB上,DE⊥AB交BC于E,點F是AE的中點
(1)寫出線段FD與線段FC的關(guān)系并證明;
(2)如圖2,將△BDE繞點B逆時針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段FD與線段FC的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3)將△BDE繞點B逆時針旋轉(zhuǎn)一周,如果BC=4,BE=2,直接寫出線段BF的范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場購進一種每件價格為90元的新商品,在商場試銷時發(fā)現(xiàn):銷售單價元件與每天銷售量件之間滿足如圖所示的關(guān)系.
求出y與x之間的函數(shù)關(guān)系式;
寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式,并求出售價定為多少時,每天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,F是⊙O上一點,∠BAF的平分線交⊙O于點E,交⊙O的切線BC于點C,過點E作ED⊥AF,交AF的延長線于點D.
(1)求證:DE是⊙O的切線;
(2)若DE=3,CE=2,
①求值;
②若點G 為AE上一點,求OG+EG最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知AB⊥BC于點B,底座BC的長為1米,底座BC與支架AC所成的角∠ACB=60°,點H在支架AF上,籃板底部支架EH∥BC,EF⊥EH于點E,已知AH長米,HF長米,HE長1米.
(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).
(2)求籃板底部點E到地面的距離.(結(jié)果保留根號)
查看答案和解析>>
科目: 來源: 題型:
【題目】某校有3000名學生.為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
種類 | A | B | C | D | E | F |
上學方式 | 電動車 | 私家車 | 公共交通 | 自行車 | 步行 | 其他 |
某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的學生共有____人,其中選擇B類的人數(shù)有____人.
(2)在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.
(3)若將A、C、D、E這四類上學方式視為“綠色出行”,請估計該校每天“綠色出行”的學生人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,AF,BE是△ABC的中線,AF⊥BE,垂足為點P,設(shè)BC=a,AC=b,AB=c,則a2+b2=5c2,利用這一性質(zhì)計算.如圖2,在平行四邊形ABCD中,E,F,G分別是AD,BC,CD的中點,EB⊥EG于點E,AD=8,AB=2,則AF=__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com