科目: 來源: 題型:
【題目】定義:到三角形的兩邊距離相等的點(diǎn),叫做此三角形的準(zhǔn)內(nèi)心.
(1)求證:等腰三角形底邊的中點(diǎn)是它的準(zhǔn)內(nèi)心;
(2)如圖,在△ABC中,以AC為直徑作⊙O交BC于點(diǎn)D,過點(diǎn)D作⊙O的切線EF,分別交AB與AC的延長線于點(diǎn)E,F.若點(diǎn)D是△ABC的準(zhǔn)內(nèi)心,AE=6,tan∠CFD=,求EB的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國著名的數(shù)學(xué)家華羅庚曾巧解開立方的智力題:問題:59319是一個(gè)整數(shù)的立方,求這個(gè)整數(shù)?
解答:因?yàn)椋?/span>10<<100,所以:是兩位整數(shù);
因?yàn)椋赫麛?shù)59319的末位上的數(shù)字是9,而整數(shù)0~9的立方中,只有93=729的末位數(shù)字是9,
所以:的末位數(shù)字是9;又因?yàn)閯澣?/span>59319的后面三位319得到59,而3<<4,
所以的十位數(shù)字是3;因此=39.
應(yīng)用:已知2(2x﹣2)3+221184=0,其中x是整數(shù).則x的值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】二次函數(shù)y=x2+bx﹣t的對(duì)稱軸為x=2.若關(guān)于x的一元二次方程x2+bx﹣t=0在﹣1<x<3的范圍內(nèi)有實(shí)數(shù)解,則t的取值范圍是( 。
A. ﹣4≤t<5B. ﹣4≤t<﹣3C. t≥﹣4D. ﹣3<t<5
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線的對(duì)稱軸為直線x=2,拋物線與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,且點(diǎn)A的坐標(biāo)為(-1,0).
(1)求拋物線的函數(shù)表達(dá)式;
(2)將拋物線圖象x軸下方部分沿x軸向上翻折,保留拋物線在x軸上的點(diǎn)和x軸上方圖象,得到的新圖象與直線y=t恒有四個(gè)交點(diǎn),從左到右四個(gè)交點(diǎn)依次記為D,E,F,G.當(dāng)以EF為直徑的圓過點(diǎn)Q(2,1)時(shí),求t的值;
(3)在拋物線上,當(dāng)m≤x≤n時(shí),y的取值范圍是m≤y≤7,請(qǐng)直接寫出x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若動(dòng)點(diǎn)D從B出發(fā),沿線段BA運(yùn)動(dòng)到點(diǎn)A為止(不考慮D與B,A重合的情況),運(yùn)動(dòng)速度為2cm/s,過點(diǎn)D作DE∥BC交AC于點(diǎn)E,連接BE,設(shè)動(dòng)點(diǎn)D運(yùn)動(dòng)的時(shí)間為x(s),AE的長為y(cm).
(1)求y關(guān)于x的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),△BDE的面積S有最大值?最大值為多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線(p>0),點(diǎn)F(0,p),直線l:y=-p,已知拋物線上的點(diǎn)到點(diǎn)F的距離與到直線l的距離相等,過點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),AA1⊥l,BB1⊥l,垂足分別為A1、B1,連接A1F,B1F,A1O,B1O.若A1F=a,B1F=b、則△A1OB1的面積=____.(只用a,b表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,反比例函數(shù)和一次函數(shù)y=kx-1的圖象相交于A(m,2m),B兩點(diǎn).
(1)求一次函數(shù)的表達(dá)式;
(2)求出點(diǎn)B的坐標(biāo),并根據(jù)圖象直接寫出滿足不等式的x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4.M、N在對(duì)角線AC上,且AM=CN,E、F分別是AD、BC的中點(diǎn).
(1)求證:△ABM≌△CDN;
(2)點(diǎn)G是對(duì)角線AC上的點(diǎn),∠EGF=90°,求AG的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,D是AC中點(diǎn),直線OD與⊙O相交于E,F兩點(diǎn),P是⊙O外一點(diǎn),P在直線OD上,連接PA,PC,AF,且滿足∠PCA=∠ABC.
(1)求證:PA是⊙O的切線;
(2)證明:;
(3)若BC=8,tan∠AFP=,求DE的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com