科目: 來源: 題型:
【題目】已知:如圖,二次函數(shù)y=x2+ ( 2k-1)x+k+1的圖象與x軸相交于O、A兩點,
(1)求這個二次函數(shù)的解析式
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6.求點B的坐標。
查看答案和解析>>
科目: 來源: 題型:
【題目】據(jù)農(nóng)業(yè)農(nóng)村部新聞部辦公室2018年10月15日消息,江寧省發(fā)現(xiàn)疑似非洲豬瘟疫情,此次豬瘟疫情發(fā)病急,蔓延速度快.當政府和企業(yè)迅速進行了豬瘟疫情排查和處置,在疫情排查過程中,某農(nóng)場第一天發(fā)現(xiàn)3頭生豬發(fā)病,兩天后發(fā)現(xiàn)共有192頭生豬發(fā)病,
(1)求每頭發(fā)病生豬平均每天傳染多少頭生豬?
(2)若疫情得不到有效控制,3天后生豬發(fā)病頭數(shù)會超過1500頭嗎?
查看答案和解析>>
科目: 來源: 題型:
【題目】某機械公司經(jīng)銷一種零件,已知這種零件的成本為每件20元,調(diào)查發(fā)現(xiàn)當銷售價為24元,平均每天能售出32件,而當銷售價每上漲2元,平均每天就少售出4件.
(1)若公司每天的銷售價為x元,則每天的銷售量為多少?
(2)如果物價部門規(guī)定這種零件的銷售價不得高于每件28元,該公司想要每天獲得150元的銷售利潤,銷售價應當為多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】在一次籃球比賽中,如圖隊員甲正在投籃.已知球出手時離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時達到最大高度4 m,設籃球運行軌跡為拋物線,籃圈距地面3 m.
(1)建立如圖所示的平面直角坐標系,問此球能否準確投中?
(2)此時,對方隊員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°.點O是AB的中點,邊AC=6,將邊長足夠大的三角板的直角頂點放在點O處,將三角板繞點0旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點為點E,另條直角邊與BC相交,交點為D,則等腰直角三角板的直角邊被三角板覆蓋部分的兩條線段CD與CE的長度之和為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線y= ax2+bx+c(a≠0)對稱軸為直線x=1,與x軸的一個交點坐標為(-1,0),與y軸交點為(0,3),其部分圖象如圖所示,則下列結論錯誤的是( )
A.a-b+c=0B.關于x的方程ax2+bx+c- 3=0有兩個不相等的實數(shù)根
C.abc>0D.當y>0時,-1<x<3
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線頂點為C(1,2),且與直線y=x交于點B(,);點P為拋物線上O,B兩點之間一個動點(不與O,B兩點重合),過P作PQ∥y軸交線段OB于點Q.
(1)求拋物線的解析式;
(2)當PQ的長度為最大值時,求點Q的坐標;
(3)點M為拋物線上O,B兩點之間一個動點(不與O,B兩點重合),點N為線段OB上一個動點;當四邊形PQNM為平行四邊形,且PN⊥OB時,請直接寫出Q點坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】【問題提出】如圖1,四邊形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四邊形ABCD的面積.
【嘗試解決】
旋轉(zhuǎn)是一種重要的圖形變換,當圖形中有一組鄰邊相等時,往往可以通過旋轉(zhuǎn)解決問題.
(1)如圖2,連接 BD,由于AD=CD,所以可將△DCB繞點D順時針方向旋轉(zhuǎn)60°,得到△DAB′,則△BDB′的形狀是 .
(2)在(1)的基礎上,求四邊形ABCD的面積.
[類比應用]如圖3,四邊形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,AB=2,BC=,求四邊形ABCD的面積.
考點:幾何變換綜合題.
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價格不斷走高,引起了民眾與政府的高度關注,據(jù)統(tǒng)計:今年7月20日豬肉價格比今年年初上漲了60%,某市民今年7月20日在某超市購買1千克豬肉花了80元錢.
(1)問:今年年初豬肉的價格為每千克多少元?
(2)某超市將進貨價為每千克65元的豬肉,按7月20日價格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬內(nèi)每天有1560元的利潤,并且可能讓顧客得到實惠,豬肉的售價應該下降多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】某單位為了創(chuàng)建城市文明單位,準備在單位的墻(線段MN所示)外開辟一處長方形的上地進行綠化美化,除墻體外三面要用柵欄圍起來,計劃用柵欄50米,設AB的長為x米,長方形的面積為y平方米.
(1)請求出y與x的函數(shù)關系式(不需寫出自變量的取值范圍)
(2)不考慮墻體長度,問AB的長為多少時,長方形的面積最大?
(3)若墻體長度為20米,問長方形面積最大是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com