科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知OA=12cm,OB=6cm.點P從點O開始沿0A邊向點A以1cm/s的速度移動;點Q從點B開始沿BO邊向點O以1cm/s的速度移動,如果點P、Q同時出發(fā),用t(s)表示移動的時間(0≤t<6),那么:
(1)設(shè)ΔPOQ的面積為y,求y關(guān)于t的函數(shù)關(guān)系式;
(2)當(dāng)ΔPOQ的面積為4.5cm時,ΔPOQ沿直線PQ翻折后得到ΔPCQ.試判斷點C是否落在直線AB上,并說明理由;
(3)當(dāng)t為何值時,△POQ與△AOB相似.
查看答案和解析>>
科目: 來源: 題型:
【題目】在一次測量旗桿高度的活動中,某數(shù)學(xué)興趣小組使用的方案如下:AB表示某同學(xué)從眼睛到腳底的距離,CD表示一根標(biāo)桿,EF表示旗桿,AB,CD,EF都垂直于地面,若AB=1.6米,CD=2米,人與標(biāo)桿之間的距離BD=1米,標(biāo)桿與旗桿之間的距離DF=30米,求旗桿EF的高.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,點M、N分別在AB、BC上,AB=4,AM=1,BN=.
(1)求證:ΔADM∽ΔBMN;
(2)求∠DMN的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖在平行四邊形ABCD中,E是BC上點,AE與BD相交于點F.
(1)ΔADF與ΔEBF相似嗎?請說明理由;
(2)如果E是BC的中點,那么AF與EF有怎樣的數(shù)量關(guān)系?為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,M是平行四邊形ABCD的AB邊的中點,CM與BD相交于點E,設(shè)平行四邊形ABCD的面積為1,則圖中陰影部分的面積是__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,AB是⊙O的直徑,點C在AB的延長線上,AB=4,BC=2,P是⊙O上半部分的一個動點,連接OP,CP.
(1)求△OPC的最大面積;
(2)求∠OCP的最大度數(shù);
(3)如圖2,延長PO交⊙O于點D,連接DB,當(dāng)CP=DB時,求證:CP是⊙O的切線.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有長為18米的籬笆,一面利用墻(墻的最大可用長度為10m),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為x米,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)如果要圍成面積為24m2的花圃,AB的長是多少米?
(3)能圍成面積比24m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商品的進(jìn)價為每件30元,現(xiàn)在的售價為每件40元,每星期可賣出200件.市場調(diào)查反映:如果每件的售價每漲1元,那么每星期少賣10件.設(shè)每件漲價x元,每星期的銷量為y件.
(1)求y與x的函數(shù)關(guān)系式;
(2)如何定價才能使每星期的利潤最大且每星期的銷量較大?每星期的最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面材料,并解決問題:
(1)如圖①等邊△ABC內(nèi)有一點P,若點P到頂點A、B、C的距離分別為3,4,5,求∠APB的度數(shù).
為了解決本題,我們可以將△ABP繞頂點A旋轉(zhuǎn)到△ACP′處,此時△ACP′≌△ABP,這樣就可以利用旋轉(zhuǎn)變換,將三條線段PA、PB、PC轉(zhuǎn)化到一個三角形中,從而求出∠APB=__________;
(2)基本運用
請你利用第(1)題的解答思想方法,解答下面問題:
已知如圖②,△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:EF2=BE2+FC2;
(3)能力提升
如圖③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,點O為Rt△ABC內(nèi)一點,連接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+6經(jīng)過點A(﹣2,0),B(4,0),與y軸交于點C.點D是拋物線上的一個動點,點D的橫坐標(biāo)為m(1<m<4),連接AC,BC,DB,DC.
(1)求拋物線的解析式.
(2)當(dāng)△BCD的面積等于△AOC的面積的時,求m的值.
(3)在拋物線的對稱軸上是否存在一點Q,使得△QAC的周長最小,若存在,求出點Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com