科目: 來源: 題型:
【題目】如圖,拋物線y=ax 2+bx+c的頂點為M(1,4),與x軸的右交點為A,與y軸的交點為B,點C與點B關(guān)于拋物線的對稱軸對稱,且S△ABC =3.
(1)求拋物線的解析式;
(2)點D是y軸上一點,將點D繞C點逆時針旋轉(zhuǎn)90°得到點E,若點E恰好落在拋物線上,請直接寫出點D的坐標(biāo);
(3)設(shè)拋物線的對稱軸與直線AB交于點F,問:在x軸上是否存在點P,使得以P、A、F為頂點的三角形與△ABC相似?若存在,求點P的坐標(biāo);若不存在,請說明理由
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA,PB,AB,已知∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】一個不透明的口袋里裝有分別標(biāo)有漢字“書”、“香”、“校”、“園”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.
(1)若從中任取一個球,球上的漢字剛好是“書”的概率為多少?
(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成“書香”的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了豐富學(xué)生校園文化生活,促進學(xué)生學(xué)習(xí)興趣和能力的提高,我校在初一年級開始設(shè)置選修課程,共設(shè)立課程12門,下圖為其中的四門課程(包括趣味數(shù)學(xué)、籃球隊、戲劇社、合唱團)的參加人數(shù)統(tǒng)計圖:
(1)學(xué)校初一年級參加這四門課程的總?cè)藬?shù)是 人;
(2)扇形統(tǒng)計圖中“趣味數(shù)學(xué)”部分的圓心角是 度,并把條形統(tǒng)計圖補充完整;
(3)學(xué)校原則上每一門課程組成一個班,但參加籃球隊的學(xué)生實在太多,考慮場地因素則分成兩個班,合唱團由于課程特征還是組成一個班,求這四門課程平均每班多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一枚質(zhì)地均勻的正四面體骰子,它有四個面并分別標(biāo)有數(shù)字,,,,如圖,正方形頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時針方向連續(xù)跳幾個邊長.如:若從圖起跳,第一次擲得,就順時針連續(xù)跳個邊長,落到圈;若第二次擲得,就從開始順時針連續(xù)跳個邊長,落到圈;設(shè)游戲者從圈起跳.
()嘉嘉隨機擲一次骰子,求落回到圈的概率.
()淇淇隨機擲兩次骰子,用列表法求最后落回到圈的概率,并指出她與嘉嘉落回到圈的可能性一樣嗎?
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題8分)已知二次函數(shù)y=ax2+bx+c過點A(1,0),B(﹣3,0),C(0,﹣3)
(1)求此二次函數(shù)的解析式;
(2)在拋物線上存在一點P使△ABP的面積為6,求點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,線段AB的端點在邊長為1的小正方形網(wǎng)格的格點上,現(xiàn)將線段AB繞點A按逆時針方向旋轉(zhuǎn)90°得到線段AC.
⑴請你在所給的網(wǎng)格中畫出線段AC及點B經(jīng)過的路徑;
⑵若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點A的坐標(biāo)為(1,3),點B的坐標(biāo)為(-2, -1),則點C的坐標(biāo)為 ;
⑶線段AB在旋轉(zhuǎn)到線段AC的過程中,線段AB掃過的區(qū)域的面積為 ;
⑷若有一張與⑶中所說的區(qū)域形狀相同的紙片,將它圍成一個幾何體的側(cè)面,則該幾何體底面圓的半徑長為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】在半徑為17dm的圓柱形油罐內(nèi)裝進一些油后,橫截面如圖.
(1)若油面寬AB=16dm,求油的最大深度.
(2)在(1)的條件下,若油面寬變?yōu)?/span>CD=30dm,求油的最大深度上升了多少dm?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在Rt△ABO中,∠B=90°,∠OAB=30°,OA=3.以點O為原點,斜邊OA所在直線為x軸,建立平面直角坐標(biāo)系,以點P(4,0)為圓心,PA長為半徑畫圓,⊙P與x軸的另一交點為N,點M在⊙P上,且滿足∠MPN=60°.⊙P以每秒1個單位長度的速度沿x軸向左運動,設(shè)運動時間為ts,解答下列問題:
(1)運動過程中當(dāng)點A在⊙P內(nèi)時,t的取值范圍是 ;
(2)當(dāng)⊙P和△ABO的邊相切時,求點P的坐標(biāo);
(3)當(dāng)弧MN與Rt△ABO的邊有兩個交點時,請你直接寫出t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】ABCD中,E是CD邊上一點,
(1)將△ADE繞點A按順時針方向旋轉(zhuǎn),使AD、AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線段是 ,∠AFB=∠
(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點,且∠PAQ=45°,試通過旋轉(zhuǎn)的方式說明:DQ+BP=PQ;
(3)在(2)題中,連接BD分別交AP、AQ于M、N,你還能用旋轉(zhuǎn)的思想說明BM2+DN2=MN2嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com