6.若正數(shù)a,b滿足a+b=10,則$\sqrt{a+2}$+$\sqrt{b+3}$的最大值為$\sqrt{30}$.

分析 對無理數(shù)可以先求平方,再利用均值定理求出最值,最后得出原表達(dá)式的最大值.

解答 解:正數(shù)a,b滿足a+b=10,
令y=$\sqrt{a+2}$+$\sqrt{b+3}$,
則y2=a+2+b+3+2$\sqrt{(a+2)(b+3)}$,
∵a+b=10,
∴15=a+2+b+3≥2$\sqrt{(a+2)(b+3)}$(當(dāng)a+2=b+3時(shí)等號成立),
∴y2≤30,
∴$\sqrt{a+2}$+$\sqrt{b+3}$的最大值為$\sqrt{30}$.
故答案為:$\sqrt{30}$.

點(diǎn)評 考查了均值定理的應(yīng)用,難點(diǎn)是對a+2+b+3≥2$\sqrt{(a+2)(b+3)}$的配湊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖是一個(gè)幾何體的三視圖,根據(jù)圖中的數(shù)據(jù),可知此幾何體的表面積是(  )
A.24B.$\frac{64}{3}$C.6+2$\sqrt{5}$+2$\sqrt{2}$D.24+8$\sqrt{5}$+8$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.①已知復(fù)數(shù)z滿足|z|-z=$\frac{10}{1-2i}$,求z.
②用數(shù)學(xué)歸納法證明:n3+5n(n∈N*)能被6整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(-2,2$\sqrt{3}$),則$\overrightarrow{a}$與$\overrightarrow$的夾角是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知Z=1+i,
(1)設(shè)ω=Z2+3$\overline Z$-4,求|ω|;
(2)若$\frac{{{Z^2}+aZ+b}}{{{Z^2}-Z+1}}$=1+i,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.對于實(shí)數(shù)a>0且a≠1,函數(shù)f(x)=loga(x-1)+3的圖象恒過定點(diǎn)P,則定點(diǎn)P的坐標(biāo)是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知復(fù)數(shù)z1=cosθ-i,z2=sinθ+i,則|z1•z2|的最大值為( 。
A.$\frac{3}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=|2x-1|+|x-2a|,若?x∈[1,2],f(x)≤4,則實(shí)a的取值范圍是( 。
A.($\frac{1}{4}$,$\frac{3}{2}$]B.[$\frac{1}{2}$,$\frac{3}{2}$]C.[1,$\frac{3}{2}$]D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在極坐標(biāo)系中,與點(diǎn)(3,-$\frac{π}{3}$)關(guān)于極軸所在直線對稱的點(diǎn)的極坐標(biāo)是( 。
A.(3,$\frac{2π}{3}$)B.(3,$\frac{π}{3}$)C.(3,$\frac{4π}{3}$)D.(3,$\frac{5π}{6}$)

查看答案和解析>>

同步練習(xí)冊答案