A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 將點(diǎn)(2,3)代入雙曲線的方程,結(jié)合離心率公式和a,b,c的關(guān)系,解方程可得a=1,c=2,進(jìn)而得到焦距.
解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)經(jīng)過點(diǎn)(2,3),
可得$\frac{4}{{a}^{2}}$-$\frac{9}{^{2}}$=1,
又離心率為2,即e=$\frac{c}{a}$=2,
即有c=2a,b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{3}$a,
可得$\frac{4}{{a}^{2}}$-$\frac{9}{3{a}^{2}}$=1,解得a=1,
則c=2.即焦距2c=4.
故選:B.
點(diǎn)評(píng) 本題考查雙曲線的方程和性質(zhì),注意運(yùn)用點(diǎn)滿足雙曲線的方程,以及離心率與a,b,c的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
想到“北上廣”創(chuàng)業(yè) | 不想到“北上廣”創(chuàng)業(yè) | 合計(jì) | |
男性 | 10 | ||
女性 | 20 | ||
合計(jì) | 100 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 54 | B. | 81 | C. | 162 | D. | 243 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{3}{4}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在區(qū)間[-$\frac{π}{4}$,$\frac{3π}{4}$]上單調(diào)遞減 | B. | 在區(qū)間[-$\frac{π}{4}$,$\frac{3π}{4}$]上單調(diào)遞增 | ||
C. | 在區(qū)間[-$\frac{π}{8}$,$\frac{3π}{8}$]上單調(diào)遞減 | D. | 在區(qū)間[-$\frac{π}{8}$,$\frac{3π}{8}$]上單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | T=2π,一條對(duì)稱軸方程為x=$\frac{π}{8}$ | B. | T=2π,一條對(duì)稱軸方程為x=$\frac{3π}{8}$ | ||
C. | T=π,一條對(duì)稱軸方程為x=$\frac{π}{8}$ | D. | T=π,一條對(duì)稱軸方程為x=$\frac{3π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com