【題目】如圖,已知四邊形均為平行四邊形,點在平面內(nèi)的射影恰好為點,以為直徑的圓經(jīng)過點,,的中點為的中點為,且

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值. 

【答案】(Ⅰ)證明見解析;(Ⅱ)

【解析】

試題分析: (Ⅰ)推導出平面,從而平面平面,從而,再求出,從而平面 ,由此能證明平面平面.(Ⅱ)以為原點,軸,軸,軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值.

試題解析:

(Ⅰ)∵點在平面內(nèi)的射影恰好為點,∴平面,

平面,∴平面平面

又以為直徑的圓經(jīng)過點,,∴為正方形.

又平面平面,∴平面

平面,

,∴,

的中點為,∴,

,∴,

平面平面,,∴平面

平面,∴平面平面

(Ⅱ)如圖,建立以為原點,的方向為軸的正方向,的方向為軸的正方向,的方向為軸的正方向的空間直角坐標系,

,則,,

的中點為,∴

,,

設平面的法向量為,則

,則

易知平面的一個法向量為,

設二面角

,

容易看出二面角為銳角,故二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若曲線處切線的斜率為,求此切線方程;

(2)若有兩個極值點,求的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的離心率,橢圓C上的點到其左焦點的最大距離為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點A作直線與橢圓相交于點B,則軸上是否存在點P,使得線段,且?若存在,求出點P坐標;否則請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一所學校計劃舉辦“國學”系列講座.由于條件限制,按男、女生比例采用分層抽樣的方法,從某班選出10人參加活動.在活動前對所選的10名同學進行了國學素養(yǎng)測試,這10名同學的性別和測試成績(百分制)的莖葉圖如圖.

1)根據(jù)這10名同學的測試成績,估計該班男、女生國學素養(yǎng)測試的平均成績;

2)若成績大于等于75分為優(yōu)良,從這10名同學中隨機選取2名男生,2名女生,求這4名同學的國學素養(yǎng)測試成績均為優(yōu)良的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)ln(x+1)x

求函數(shù)f(x)的單調(diào)遞減區(qū)間;

,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩種坐標系中的長度單位相同,圓的直角坐標方程為,直線的參數(shù)方程為為參數(shù)),射線的極坐標方程為

1)求圓和直線的極坐標方程;

(2)已知射線與圓的交點為,與直線的交點為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】棋盤上標有第0、12...100站,棋子開始位于第0站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第99站或第100站時,游戲結束.設棋子位于第n站的概率為,設.則下列結論正確的有(

;

②數(shù)列)是公比為的等比數(shù)列;

;

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,,都是邊長為2的等邊三角形,設在底面的射影為.

(1)求證:中點;

(2)證明:;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,是實數(shù).

)若處取得極值,的值;

)若在區(qū)間為增函數(shù),的取值范圍;

)在(Ⅱ)的條件下,函數(shù)有三個零點,的取值范圍.

查看答案和解析>>

同步練習冊答案