分析 (1)根據(jù)矩形面積公式和二倍角公式和正弦函數(shù)的性質(zhì)即可求出最值,
(2)根據(jù)矩形面積公式和兩角和差的正弦公式和正弦函數(shù)的性質(zhì)即可求出最值,
解答 解:(1)方案一:如圖1,連接OC,設∠COB=θ,
則CB=COsinθ=10sinθ,OB=COcosθ=10cosθ,
則AB=20cosθ,
S=AB•BC=100sin2θ,
當θ=45°時,Smax=100,
(2)方案二:如圖2
連接OC,設∠BOC=θ,則AD=CB=10sinθ,OB=10cosθ
OA=$\frac{AD}{tan60°}$=10sinθ•$\frac{\sqrt{3}}{3}$,
則AB=OB-OA=10cosθ-10sinθ•$\frac{\sqrt{3}}{3}$,
∴S=AB•BC=$\frac{100\sqrt{3}}{3}$sin(2θ+$\frac{π}{6}$)-$\frac{50\sqrt{3}}{3}$,
當∠DOC=θ=30°時,Smax=$\frac{50\sqrt{3}}{3}$.
點評 本題考查了解三角形在幾何中的應用,關鍵是構造函數(shù)三角函數(shù),屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | m>$\frac{2\sqrt{3}}{3}$或m<-$\frac{2\sqrt{3}}{3}$ | B. | m<-$\frac{2\sqrt{3}}{3}$或m>0 | C. | m>$\frac{2\sqrt{3}}{3}$ | D. | m<-$\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow$-$\frac{1}{3}$$\overrightarrow{a}$ | B. | $\overrightarrow$-$\frac{2}{3}$$\overrightarrow{a}$ | C. | $\overrightarrow$-$\frac{4}{3}$$\overrightarrow{a}$ | D. | $\overrightarrow$+$\frac{1}{3}$$\overrightarrow{a}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ${x^2}+\frac{y^2}{6}=1$ | B. | ${x^2}+\frac{y^2}{3}=1$ | C. | ${x^2}+\frac{y^2}{4}=1$ | D. | ${x^2}+\frac{y^2}{2}=1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{3}}}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com