已知函數(shù)f(x)=lg(x2+ax-a+1),當(dāng)a>0時(shí),f(x)在[2,+∞)上有反函數(shù).
 
(判斷對(duì)錯(cuò))
考點(diǎn):反函數(shù),對(duì)數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:當(dāng)a>0,x∈[2,+∞)時(shí),x2+ax-a+1=(x+
a
2
)2
-
a2
4
-a+1,可得f(x)在[2,+∞)上單調(diào)遞增,且x2+ax-a+1>0.即可得出.
解答: 解:當(dāng)a>0,x∈[2,+∞)時(shí),x2+ax-a+1=(x+
a
2
)2
-
a2
4
-a+1,
∴f(x)在[2,+∞)上單調(diào)遞增,且x2+ax-a+1>x2+1=5>0.
∴f(x)在[2,+∞)上有反函數(shù).
因此正確.
故答案為:對(duì).
點(diǎn)評(píng):本題考查了二次函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性、反函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.直線
x=2+
3
t
y=1+t
(t為參數(shù))與曲線ρ=2asinθ(θ為參數(shù)且a>0)相切,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖中,圖一的是一個(gè)長(zhǎng)方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在如圖二畫(huà)出(單位:cm),P為原長(zhǎng)方體上底面A1B1C1D1的中心.
(1)在正視圖下面,按照畫(huà)三視圖的要求畫(huà)出該多面體的俯視圖(直尺作圖);
(2)以D為原點(diǎn)建立適當(dāng)?shù)目臻g直角坐標(biāo)系(右手系),在圖中標(biāo)出坐標(biāo)軸,并按照給出的尺寸寫(xiě)出點(diǎn)E,P的坐標(biāo);
(3)連接AP,證明:AP∥面EFG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若三棱錐的三個(gè)側(cè)面兩兩垂直,且側(cè)棱長(zhǎng)均為
3
,則其外接球的表面積為( 。
A、18π
B、36π
C、9π
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角梯形MCDE中,EM∥DC,ED⊥DC,B是EM上一點(diǎn),CD=BM=
2
CM=2,EB=ED=1,沿BC把△MBC折起,使平面MBC⊥平面BCDE,得出右側(cè)的四棱錐A-BCDE.
(1)證明:平面EAD⊥平面ACD;
(2)求二面角E-AD-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線與直線y=2x有公共點(diǎn),與直線y=3x沒(méi)有公共點(diǎn),則雙曲線的離心率取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與直線y=a相交所得的線段長(zhǎng)為2b,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從一副52張撲克牌中任取5張牌,其中至少有2張牌花式相同是
 
事件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2-2x+y2=8與直線l:y=kx+3.
(1)當(dāng)直線l與圓C相切時(shí),求k的值;
(2)當(dāng)k=2時(shí),求直線l被圓C截得的弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案