雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與直線y=a相交所得的線段長(zhǎng)為2b,則該雙曲線的離心率為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專(zhuān)題:圓錐曲線的定義、性質(zhì)與方程
分析:把y=a代入雙曲線
x2
a2
-
y2
b2
=1,解得x,推出ac=b2=c2-a2,解出e即可.
解答: 解:把y=a代入雙曲線
x2
a2
-
y2
b2
=1,解得x=±
ac
b

2ac
b
=2b,
∴ac=b2=c2-a2
化為e2-e-1=0,e>1.
解得e=
1+
5
2
,
故答案為:
1+
5
2
點(diǎn)評(píng):本題考查了雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在長(zhǎng)方形ABCD中,已知AB=4,BC=2,O為AB的中點(diǎn),在長(zhǎng)方形ABCD內(nèi)隨機(jī)取一點(diǎn),取到的點(diǎn)到O的距離小于2的概率為( 。
A、
π
8
B、
π
4
C、1-
π
8
D、1-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列五個(gè)命題:
①命題“?x∈R使得x2+x+1<0”的否定是:“?x∈R均有x2+x+1>0”
②若兩組數(shù)據(jù)的中位數(shù)相等,則它們的平均數(shù)也相等
③已知x>0時(shí),(x-1)f′(x)<0,若△ABC是銳角三角形,則f(sinA)>f(cosB)
④“在三角形ABC中,若sinA>sinB,則A>B”的否命題是真命題
⑤過(guò)M(2,0)的直線l與橢圓
x2
2
+y2
=1交于P1,P2兩點(diǎn),線段P1P2中點(diǎn)為P,設(shè)直線l的斜率為k1(k1≠0),直線OP的斜率為k2,則k1k2等于-
1
2

其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg(x2+ax-a+1),當(dāng)a>0時(shí),f(x)在[2,+∞)上有反函數(shù).
 
(判斷對(duì)錯(cuò))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,直線AC到平面A1B1C1D1的距離為( 。
A、
2
2
B、
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等腰三角形ABC的腰長(zhǎng)為底邊長(zhǎng)的2倍,則頂角A的余弦值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中正確的是( 。
A、命題?x∈R,x2+x+1<0的否定?x∈R,x2+x+1<0
B、若p∨q為真命題,則p∧q也為真命題
C、“函數(shù)f(x)=cos(2z+φ)為奇函數(shù)”是“φ=
π
2
”的充分不必要條件
D、命題“若x2-3x+2=0,則x=1”的否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式x2+x-56≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:x+my+6=0,直線l2:(m-2)x+3my+18=0.
(1)若l1∥l2,求實(shí)數(shù)m的值;
(2)若l1⊥l2,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案