分析 由已知等式兩邊平方,可求2sinαcosα的值,結(jié)合α的范圍,進而可求sinα-cosα的值,聯(lián)立可求sinα的值,利用誘導(dǎo)公式化簡所求即可計算得解.
解答 (本小題滿分12分)
解:∵sinα+cosα=$\frac{7}{5}$,
∴(sinα+cosα)2=1+2sinαcosα=$\frac{49}{25}$,------(1分)
∴2sinαcosα=$\frac{24}{25}$.--------(2分)
∴(sinα-cosα)2=1-2sinαcosα=1-$\frac{24}{25}$=$\frac{1}{25}$.-----(3分)
又α∈($\frac{π}{4}$,$\frac{π}{2}$),
∴sinα-cosα=$\frac{1}{5}$,---------(4分)
∴sinα=$\frac{4}{5}$,---------(6分)
∴$\frac{sin(\frac{3π}{2}+α)tan(α-5π)cos(\frac{π}{6}-α)}{sin(\frac{π}{3}+α)}$=$\frac{-cosα•tanα•cos(\frac{π}{6}-α)}{cos(\frac{π}{6}-α)}$=-sinα=-$\frac{4}{5}$.---------(12分)
點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,誘導(dǎo)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$,2 | B. | $\frac{1}{2}$,1 | C. | $\frac{3}{2}$,1 | D. | $\frac{1}{2}$,2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{1}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com