【題目】已知公差不為0的等差數列{an}的首項a1為a(a∈R).設數列的前n項和為Sn,且,,成等比數列.
(1)求數列{an}的通項公式及Sn;
(2)記,.當n≥2時,求An與Bn.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知的方程為,平面內兩定點、.當的半徑取最小值時:
(1)求出此時的值,并寫出的標準方程;
(2)在軸上是否存在異于點的另外一個點,使得對于上任意一點,總有為定值?若存在,求出點的坐標,若不存在,請說明你的理由;
(3)在第(2)問的條件下,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2x的焦點為F,平行于x軸的兩條直線l1 , l2分別交C于A,B兩點,交C的準線于P,Q兩點.
(1)若F在線段AB上,R是PQ的中點,證明AR∥FQ;
(2)若△PQF的面積是△ABF的面積的兩倍,求AB中點的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2=4,點P為直線x+2y﹣9=0上一動點,過點P向圓C引兩條切線PA、PB,A、B為切點,則直線AB經過定點( )
A.
B.
C.(2,0)
D.(9,0)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,⊥平面,底面為正方形,為的中點,.
(1)求證:;
(2)邊上是否存在一點,使得//平面?若存在,求的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)= ,曲線y=f(x)在點(1,f(1))處的切線與直線x+y+1=0垂直. (Ⅰ)求a的值;
(Ⅱ)若對于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范圍;
(Ⅲ)求證:ln(4n+1)≤16 (n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校按分層抽樣的方法從高中三個年級抽取部分學生調查,從三個年級抽取人數的比例為如圖所示的扇形面積比,已知高二年級共有學生1 200人,并從中抽取了40人.
(1)該校的總人數為多少?(2)三個年級分別抽取多少人?
(3)在各層抽樣中可采取哪種抽樣方法?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com