11.已知log163=m,則用m表示log916=$\frac{1}{2m}$.

分析 利用對數(shù)的性質(zhì)、運算法則、換底公式直接求解.

解答 解:∵log163=m,
∴l(xiāng)og916=$lo{g}_{{3}^{2}}16$=$\frac{1}{2}lo{g}_{3}16$=$\frac{1}{2m}$.
故答案為:$\frac{1}{2m}$.

點評 本題考查對數(shù)式化簡求值,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)的性質(zhì)、運算法則、換底公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.-20是數(shù)列{(-1)n+1n(n+1)}的第4項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,sin(α+β)=$\frac{5}{13}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{logabn}(a>0且a≠1)是首項為2,公差為1的等差數(shù)列,若數(shù)列{an}是遞增數(shù)列,且滿足an=bnlgbn,則實數(shù)a的取值范圍是(  )
A.($\frac{2}{3}$,1)B.(2,+∞)C.($\frac{2}{3}$,1)∪(1,+∞)D.(0,$\frac{2}{3}$)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.向量$\overrightarrow{a}$=(4,-3),$\overrightarrow$=(2x,y),$\overrightarrow{c}$=(x+$\frac{y}{2}$,2),已知$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow{a}$⊥$\overrightarrow{c}$,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.一組數(shù)據(jù)x1,x2,…,x5的平均數(shù)為5,x${\;}_{1}^{2}$,x${\;}_{2}^{2}$,…,x${\;}_{5}^{2}$的平均數(shù)為33,則數(shù)據(jù)x1,x2,…,x5的方差為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列函數(shù)的單調(diào)區(qū)間:
(1)y=3x2+6x+5;
(2)y=2x3-9x2+12x-3;
(3)y=2x+$\frac{8}{x}$(x>0);
(4)y=x-lnx2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,已知AC=4,BC=5.
(I)若∠A=60°,求cosB的值;
(Ⅱ)若cos(A-B)=$\frac{7}{8}$,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立坐標(biāo)系.已知曲線C:ρsin2θ=2acosθ(a>0),過點P(-1,2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t是參數(shù)),直線l與曲線C分別交于M,N兩點.
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

同步練習(xí)冊答案