2.已知α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,sin(α+β)=$\frac{5}{13}$,求sinα的值.

分析 由已知可求范圍α+β∈($\frac{π}{2}$,$\frac{3π}{2}$),利用同角三角函數(shù)基本關(guān)系式可求cos(α+β),sinβ的值,利用角的關(guān)系α=(α+β)-β,根據(jù)兩角差的正弦函數(shù)公式即可化簡(jiǎn)求值.

解答 解:∵α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),
∴α+β∈($\frac{π}{2}$,$\frac{3π}{2}$),…1分
∴cos(α+β)=-$\sqrt{1-si{n}^{2}(α+β)}$=-$\frac{12}{13}$,…3分
∴sinβ=$\sqrt{1-co{s}^{2}β}$=$\frac{4}{5}$,…5分
∴sinα=sin[(α+β)-β]=sin(α+β)cosβ-cos(α+β)sinβ=$\frac{5}{13}×(-\frac{3}{5})$-(-$\frac{12}{13}$)×$\frac{4}{5}$=$\frac{33}{65}$…8分

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的正弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知集合A={1,2,3,x},B={3,x2},且A∪B={1,2,3,x},求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.曲線y=-5ex+3在點(diǎn)x=0處的切線方程為y=-5x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)若$|\overrightarrow a|=2$,$|\overrightarrow b|=1$,且$\overrightarrow a$與$\overrightarrow b$夾角為60°,求$|2\overrightarrow a-\overrightarrow b|$.
(2)若tanθ=2,求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{sinθ+cosθ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知A(1,-3),B(8,$\frac{1}{2}$)且A,B,C共線,則C點(diǎn)的坐標(biāo)可能是( 。
A.(-9,1)B.(9,-1)C.(9,1)D.(-9,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.每一個(gè)音都是純音合成的,純音的數(shù)字模型是函數(shù)y=Asinωt.音調(diào)、響度、音長(zhǎng)、音色等音的四要素都與正弦函數(shù)及其參數(shù)(振幅、頻率)有關(guān).我們聽(tīng)到聲音是由許多音的結(jié)合,稱為復(fù)合音.若一個(gè)復(fù)合音的函數(shù)是y=$\frac{1}{4}$sin4x+$\frac{1}{6}$sin6x,則該復(fù)合音的周期為( 。
A.$\frac{3π}{2}$B.πC.$\frac{2π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.四邊形ABCD中,$\overrightarrow{AB}$=(3,2),$\overrightarrow{BC}$=(x,y),$\overrightarrow{CD}$=(-2,-3)
(1)若$\overrightarrow{BC}$∥$\overrightarrow{DA}$,試求x與y滿足的關(guān)系式;
(2)滿足(1)同時(shí)又有$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,求x,y的值及四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知log163=m,則用m表示log916=$\frac{1}{2m}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)y=cos2x的圖象關(guān)于($\frac{π}{4}$+$\frac{kπ}{2}$,0)或直線x=$\frac{kπ}{2}$,k∈Z對(duì)稱.

查看答案和解析>>

同步練習(xí)冊(cè)答案