【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線交曲線于,兩點(diǎn),交曲線于,兩點(diǎn),求的長(zhǎng).
【答案】(Ⅰ)曲線的極坐標(biāo)方程為:;的直角坐標(biāo)方程為:;(Ⅱ)
【解析】
(I)消去參數(shù),即可得到曲線的直角坐標(biāo)方程,結(jié)合,即可得到曲線的極坐標(biāo)方程。(II)計(jì)算直線l的直角坐標(biāo)方程和極坐標(biāo)方程,計(jì)算長(zhǎng),即可。
解法一:(Ⅰ)曲線:(為參數(shù))可化為直角坐標(biāo)方程:,
即,
可得,
所以曲線的極坐標(biāo)方程為:.
曲線:,即,
則的直角坐標(biāo)方程為:.
(Ⅱ)直線的直角坐標(biāo)方程為,
所以的極坐標(biāo)方程為.
聯(lián)立,得,
聯(lián)立,得,
.
解法二:(Ⅰ)同解法一
(Ⅱ)直線的直角坐標(biāo)方程為,
聯(lián)立,解得,
聯(lián)立,解得,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某小區(qū)抽取50戶居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50到350度之間,將用電量的數(shù)據(jù)繪制成頻率分布直方圖如下.
(1)求頻率分布直方圖中的值并估計(jì)這50戶用戶的平均用電量;
(2)若將用電量在區(qū)間內(nèi)的用戶記為類(lèi)用戶,標(biāo)記為低用電家庭,用電量在區(qū)間內(nèi)的用戶記為類(lèi)用戶,標(biāo)記為高用電家庭,現(xiàn)對(duì)這兩類(lèi)用戶進(jìn)行問(wèn)卷調(diào)查,讓其對(duì)供電服務(wù)進(jìn)行打分,打分情況見(jiàn)莖葉圖:
①?gòu)?/span>類(lèi)用戶中任意抽取3戶,求恰好有2戶打分超過(guò)85分的概率;
②若打分超過(guò)85分視為滿意,沒(méi)超過(guò)85分視為不滿意,請(qǐng)?zhí)顚?xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“滿意度與用電量高低有關(guān)”?
滿意 | 不滿意 | 合計(jì) | |
類(lèi)用戶 | |||
類(lèi)用戶 | |||
合計(jì) |
附表及公式:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)在上的最小值為,若不等式有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間及極值;
(2)設(shè)時(shí),存在,使方程成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是美麗的“勾股樹(shù)”,它是一個(gè)直角三角形分別以它的每一邊向外作正方形而得到.圖一是第1代“勾股樹(shù)”,重復(fù)圖一的作法,得到圖二為第2代“勾股樹(shù)”,以此類(lèi)推,已知最大的正方形面積為1,則第n代“勾股樹(shù)”所有正方形的面積的和為( )
A. nB. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)結(jié)論:
①命題“,”的否定是“,”;
②命題“若,則且”的否定是“若,則”;
③命題“若,則或”的否命題是“若,則或”;
④若“是假命題,是真命題”,則命題,一真一假.
其中正確結(jié)論的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積是.
(1)求點(diǎn)的軌跡的方程;
(2)直線與曲線相交于兩點(diǎn),若是否存在實(shí)數(shù),使得的面積為?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是等差數(shù)列的前項(xiàng)和,且,則下列結(jié)論錯(cuò)誤的是
A. B. C. D. 是遞減數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是首項(xiàng)為1的等差數(shù)列,數(shù)列滿足,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com