8.已知過點(diǎn)(-1,-1)的直線與圓x2+y2-2x+6y+6=0有兩個(gè)公共點(diǎn),則該直線的斜率的取值范圍為(-∞,0).

分析 設(shè)直線的斜率是k,利用直線和圓的位置關(guān)系,即可求得直線l的斜率的取值范圍.

解答 解:設(shè)直線的斜率是k,則直線方程為y+1=k(x+1),
即kx-y+k-1=0,圓x2+y2-2x+6y+6=0可化為圓(x-1)2+(y+3)2=4
圓心到直線的距離d=$\frac{|k+3+k-1|}{\sqrt{{k}^{2}+1}}$<2,
解得k<0,
故答案為:(-∞,0).

點(diǎn)評(píng) 本題主要考查直線斜率的求解,根據(jù)直線和圓的位置關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$,則f(x)最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,已知向量$\overrightarrow{AB}$=(cos18°,cos72°),$\overrightarrow{BC}$=(2cos63°,2cos27°),則$|{\overrightarrow{AB}}|$=1,$|{\overrightarrow{BC}}|$=2,△ABC的面積為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在(0,1)內(nèi)任取一個(gè)實(shí)數(shù)b,則使得方程x2-x+b=0有實(shí)數(shù)根的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若$sin(x+\frac{π}{6})=\frac{1}{3}$,則$sin(\frac{5π}{6}-x)-{sin^2}(\frac{π}{3}-x)$的值為$-\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線$\left\{{\begin{array}{l}{x={x_0}+tcosα}\\{y={y_0}+tsinα}\end{array}}\right.$(t為參數(shù),α是直線的傾斜角)上有兩點(diǎn)P1,P2,它們所對(duì)應(yīng)的參數(shù)值分別是t1,t2,則|P1P2|等于( 。
A.t1+t2B.|t1|+|t2|C.|t1+t2|D.|t1-t2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx-ax2+(2-a)x.
(1)若函數(shù)f(x)在[1,+∞)上為減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),g(x)=x2-2x+b,當(dāng)$x∈[{\frac{1}{2},2}]$時(shí),f(x)與g(x)有兩個(gè)交點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線y2-$\frac{{x}^{2}}{3}$=1的焦點(diǎn)坐標(biāo)是(  )
A.(0,$\sqrt{2}$),(0,-$\sqrt{2}$)B.($\sqrt{2}$,0),($-\sqrt{2}$,0)C.(0,2),(0,-2)D.(2,0),(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知某幾何體的三視圖如圖所示,則該幾何體的體積為$8-\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案