19.用反證法證明某命題時(shí),對其結(jié)論:“自然數(shù)a、b、c中恰有一個(gè)奇數(shù)”正確的反設(shè)為( 。
A.a、b、c都是奇數(shù)
B.a、b、c都是偶數(shù)
C.a、b、c中至少有兩個(gè)奇數(shù)
D.a、b、c中至少有兩個(gè)奇數(shù)或都是偶數(shù)

分析 用反證法證明某命題時(shí),應(yīng)先假設(shè)命題的否定成立,即可得出結(jié)論.

解答 解:用反證法證明某命題時(shí),應(yīng)先假設(shè)命題的否定成立,
而:“自然數(shù)a,b,c中恰有一個(gè)奇數(shù)”的否定為:“a,b,c中至少有兩個(gè)奇數(shù)或都是奇偶數(shù)”,
故選D.

點(diǎn)評 本題主要考查用反證法證明數(shù)學(xué)命題,把要證的結(jié)論進(jìn)行否定,得到要證的結(jié)論的反面,是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等腰直角三角形ABC中,A=90°,A,B在雙曲線E的同一支上,且線段AB通過雙曲線的一個(gè)焦點(diǎn),C為雙曲線E的另一個(gè)焦點(diǎn),則該雙曲線的離心率為( 。
A.$\sqrt{4-2\sqrt{2}}$B.$\sqrt{5-2\sqrt{2}}$C.$\sqrt{4+2\sqrt{2}}$D.$\sqrt{5+2\sqrt{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,若輸入x=1,則輸出y的值是(  )
A.7B.15C.23D.31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.下列命題:
①若$α+β=\frac{7π}{4}$,則(1-tanα)•(1-tanβ)=2;
②已知$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(2,λ),且$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角,則實(shí)數(shù)λ的取值范圍是λ<1;
③已知O是平面上一定點(diǎn),A,B,C是平面上不共線的三個(gè)點(diǎn),動(dòng)點(diǎn)P滿足$\overrightarrow{OP}=\overrightarrow{OA}+λ(\overrightarrow{AB}+\overrightarrow{AC})$,λ∈(0,+∞),則P的軌跡一定通過△ABC的重心;
④在△ABC中,∠A=60°,邊長a,c分別為$a=4,c=3\sqrt{3}$,則△ABC只有一解;
⑤如果△ABC內(nèi)接于半徑為R的圓,且$2R({sin^2}A-{sin^2}C)=(\sqrt{2}a-b)sinB$,則△ABC的面積的最大值$\frac{{\sqrt{2}+1}}{2}{R^2}$;
其中真命題的序號為①③⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某次軍事演習(xí)要出動(dòng)一艘航母,2艘攻擊型潛艇一前一后,3艘驅(qū)逐艦和3艘護(hù)衛(wèi)艦分列左右,每側(cè)3艘,同側(cè)不能都是同種艦艇,則艦艇分配方案的方法數(shù)為( 。
A.72B.324C.648D.1296

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為迎接2016年“猴”年的到來,某電視臺舉辦猜獎(jiǎng)活動(dòng),參與者需先后回答兩道選擇題,問題A有三個(gè)選項(xiàng),問題B有四個(gè)選項(xiàng),每題只有一個(gè)選項(xiàng)是正確的,正確回答問題A可獲獎(jiǎng)金1千元,正確回答問題B可獲獎(jiǎng)金2千元.活動(dòng)規(guī)定:參與者可任意選擇回答問題的順序,如果第一個(gè)問題回答正確,則繼續(xù)答題,否則該參與者猜獎(jiǎng)活動(dòng)終止.假設(shè)某參與者在回答問題前,選擇每道題的每個(gè)選項(xiàng)的機(jī)會(huì)是等可能的.
(Ⅰ)如果該參與者先回答問題A,求其恰好獲得獎(jiǎng)金1千元的概率;
(Ⅱ)試確定哪種回答問題的順序能使該參與者獲獎(jiǎng)金額的期望值較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.平面向量$\overrightarrow{a}$,$\overrightarrow$滿足:$\overrightarrow{a}•\overrightarrow$=4,|$\overrightarrow{a}$-$\overrightarrow$|=3,則|$\overrightarrow{a}$|的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)數(shù)列{an}滿足:a1=1,an+1=an+2,n∈N*,數(shù)列{bn}為等比數(shù)列.已知a1b1+a2b2+a3b3+…+anbn=(n-1)•3n+1+3.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)an•(1+2log3bn)•cn=1,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知如圖,△ABC中,AD是BC邊的中線,∠BAC=120°,且$\overrightarrow{AB}•\overrightarrow{AC}$=-$\frac{15}{2}$.
(Ⅰ)求△ABC的面積;
(Ⅱ)若AB=5,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案