7.求證:函數(shù)f(x)=x2+$\frac{2}{x}$在數(shù)集{x∈R|x>1}上是增加的.

分析 直接利用函數(shù)的單調(diào)性的定義,證明即可.

解答 證明:任取x2>x1>1,函數(shù)值作差得
$\begin{array}{l}f({x_1})-f({x_2})=(x_1^2+\frac{2}{x_1})-(x_2^2+\frac{2}{x_2})=(x_1^2-x_2^2)+(\frac{2}{x_1}-\frac{2}{x_2})\\=({x_1}+{x_2})({x_1}-{x_2})+\frac{{2({x_2}-{x_1})}}{{{x_1}{x_2}}}=({x_1}-{x_2})\frac{{{x_1}{x_2}({x_1}+{x_2})-2}}{{{x_1}{x_2}}}\end{array}$
因?yàn)閤1<x2,所以x1-x2<0,而x1x2>1>0,x1+x2>2,
所以x1x2(x1+x2)-2>0,于是f(x1)-f(x2)<0,即f(x1)<f(x2),
所以函數(shù)$f(x)={x^2}+\frac{2}{x}$在數(shù)集{x∈R|x>1}上是增加的.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性的證明,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知點(diǎn)A,F(xiàn)分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點(diǎn)和右焦點(diǎn),過(guò)點(diǎn)F的直線l與雙曲線C的一條漸近線垂直且與另一條漸近線和y軸分別交于P,Q兩點(diǎn),若$\overrightarrow{AP}$•$\overrightarrow{AQ}$=-a2,則雙曲線C的離心率為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)函數(shù)f(x)的定義域?yàn)椋?,+∞)的增函數(shù),且f(xy)=f(x)+f(y),f(2)=1,則滿足f(x)+f(x-3)≤2的x的取值范圍是(3,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.正方形ABCD的邊長(zhǎng)為2,(如圖),線段MN=1,當(dāng)點(diǎn)M、N在正方形ABCD的邊上滑動(dòng)一周(保持MN的長(zhǎng)度不變)時(shí),線段MN的中點(diǎn)P的軌跡圍成一個(gè)封閉圖形E,現(xiàn)向正方形中隨機(jī)投入一點(diǎn),則該點(diǎn)落在E內(nèi)的概率是( 。
A.$\frac{7}{8}$B.$\frac{π}{16}$C.$1-\frac{π}{16}$D.$\frac{3}{4}+\frac{π}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.過(guò)曲線C:y=ex上一點(diǎn),然后再過(guò)P1(x1,y1)做曲線C的切線l1交x軸于Q2(x2,0),又過(guò)Q2做x軸P0(0,1)作曲線C的切線l0交x軸于點(diǎn)Q1(x1,0),又過(guò)Q1做x軸的垂線交曲線C于P1(x1,y1)的垂線交曲線C于點(diǎn)P2(x2,y2),…,以此類推,過(guò)點(diǎn)Pn的切線ln與x軸相交于點(diǎn)Qn+1(xn+1,0),再過(guò)點(diǎn)Qn+1做x軸的垂線交曲線C于點(diǎn)Pn+1(xn+1,yn+1)(n=1,2,3,…).
(1)求x1、x2及數(shù)列{xn}的通項(xiàng)公式;
(2)設(shè)曲線C與切線ln及垂線Pn+1Qn+1所圍成的圖形面積為Sn,求Sn的表達(dá)式;
(3)在滿足(2)的條件下,若數(shù)列Sn的前n項(xiàng)和為Tn,求證:$\frac{{{T_{n+1}}}}{T_n}$<$\frac{{{x_{n+1}}}}{x_n}$(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知點(diǎn)A(1,2,2)、B(1,-3,1),點(diǎn)C在yOz平面上,且點(diǎn)C到點(diǎn)A、B的距離相等,則點(diǎn)C的坐示可以為( 。
A.(0,1,-1)B.(0,-1,6)C.(0,1,-6)D.(0,1,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知i為虛數(shù)單位,復(fù)數(shù)z=a+bi(a,b∈R)的虛部b記作Im(z),則Im($\frac{-i}{1-i}$)=( 。
A.-$\frac{1}{2}$B.-1C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.現(xiàn)給如圖所示的4個(gè)區(qū)域涂色,要求相鄰區(qū)域不得使用同一顏色,共有3種顏色可供選擇,則不同的   涂色方法共有6種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)命題p:實(shí)數(shù)x滿足x2-4ax+3a2<0,其中a>0,命題q:實(shí)數(shù)x滿足$\left\{\begin{array}{l}{x^2}-x-6≤0\\|{x+1}|>3.\end{array}\right.$
(1)若a=1,p且q為真,求實(shí)數(shù)x的取值范圍;
(2)若q是p的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案