8.在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-$\frac{π}{6}$)=a截得的弦長為2$\sqrt{3}$,求實數(shù)a的值.

分析 把極坐標(biāo)與直角坐標(biāo)方程,求出圓心到直線的距離,利用弦長公式即可得出.

解答 解:圓C:ρ=4cosθ,即ρ2=4ρcosθ,化為直角坐標(biāo)方程:x2+y2=4x,配方為(x-2)2+y2=4,可得圓心C(2,0),半徑r=2.
直線l:ρsin(θ-$\frac{π}{6}$)=a展開為:$\frac{\sqrt{3}}{2}ρsinθ$-$\frac{1}{2}ρcosθ$=a,化為直角坐標(biāo)方程:x-$\sqrt{3}$y+2a=0.
圓心C到直線l的距離d=$\frac{|2+2a|}{2}$=|1+a|.
∴2$\sqrt{3}$=2$\sqrt{4-(1+a)^{2}}$,化為:1+a=±1,解得a=0或-2.

點評 本題考查了極坐標(biāo)與直角坐標(biāo)方程的互化、點到直線的距離公式公式、勾股定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.$\underset{lim}{n→∞}$(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{2}^{8}}$)…(1+$\frac{1}{{2}^{{2}^{n}}}$)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.矩形ABCD中,AB=2,AD=1,P為矩形內(nèi)部一點,且AP=1.若$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$(λ,μ∈R),則2λ+$\sqrt{3}$μ的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=x2-ax-3在區(qū)間(-∞,4]上單調(diào)遞減,則實數(shù)a的取值范圍是a≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)=log2x在x∈[1,4]上滿足f(x)≤m2-3am+2恒成立,則當(dāng)a∈[-1,1]時,實數(shù)m的取值范圍是(  )
A.[-$\frac{1}{3}$,$\frac{1}{3}$]B.(-∞,-$\frac{1}{3}$]∪[$\frac{1}{3}$,+∞)∪{0}C.[-3,3]D.(-∞,-3]∪[3,+∞)∪{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知三棱柱ABC-A1B1C1如圖所示,其中CA⊥平面ABB1A1,四邊形ABB1A1為菱形,∠AA1B1=60°,E為BB1的中點,F(xiàn)為CB1的中點.
(1)證明:平面AEF⊥平面CAA1C1;
(2)若CA=2,AA1=4,求B1到平面AEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=ex+ae-x,若f′(x)≥2$\sqrt{3}$恒成立,則a的取值范圍為(  )
A.[3,+∞)B.(0,3]C.[-3,0)D.(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=|x2-1|,g(x)=a|x|-1.
(Ⅰ)求不等式f(x)≤3的解集;
(Ⅱ)若f(x)≥g(x)對任意x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=4sinxcosx+2cos2x-1的最小正周期為π,最大值為$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊答案