【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:
銷售量n(件) | n=50﹣x |
銷售單價m(元/件) | 當1≤x≤20時,m=20+ x |
當21≤x≤30時,m=10+ |
(1)請計算第幾天該商品單價為25元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?
【答案】
(1)
解:分兩種情況
①當1≤x≤20時,將m=25代入m=20+ x,解得x=10.
②當21≤x≤30時,25=10+ ,解得x=28.
經(jīng)檢驗x=28是方程的解.
∴x=28.
答:第10天或第28天時該商品為25元/件.
(2)
解:分兩種情況
①當1≤x≤20時,y=(m﹣10)n=(20+ x﹣10)(50﹣x)=﹣ x2+15x+500,
②當21≤x≤30時,y=(10+ ﹣10)(50﹣x)= -420
綜上所述:
(3)
解:①當1≤x≤20時
由y=﹣ x2+15x+500=﹣ (x﹣15)2+ ,
∵a=﹣ <0,
∴當x=15時,y最大值= ,
②當21≤x≤30時
由y= ﹣420,可知y隨x的增大而減小
∴當x=21時,y最大值= ﹣420=580元
∵
∴第15天時獲得利潤最大,最大利潤為612.5元.
【解析】本題考查二次函數(shù)的應(yīng)用、反比例函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學會構(gòu)建函數(shù),利用二次函數(shù)的性質(zhì)解決問題,屬于中考?碱}型.
(1)分兩種情形分別代入解方程即可;
(2)分兩種情形寫出所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式即可;
(3)分兩種情形根據(jù)函數(shù)的性質(zhì)解決問題即可.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的一段圖象如圖所示
(1)求f(x)的解析式;
(2)把f(x)的圖象向左至少平移多少個單位,才能使得到的圖象對應(yīng)的函數(shù)為偶函數(shù)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為的正方形,側(cè)面
底面,且, 、分別為、的中點.
(1)求證: 平面;
(2)求證:面平面;
(3)在線段上是否存在點,使得二面角的余弦值為?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國內(nèi)某知名連鎖店分店開張營業(yè)期間,在固定的時間段內(nèi)消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效展開,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前7天參加抽獎活動的人數(shù)進行統(tǒng)計,表示開業(yè)第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
經(jīng)過進一步的統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.
(1)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出與的線性回歸方程;
(2)若該分店此次抽獎活動自開業(yè)始,持續(xù)10天,參加抽獎的每位顧客抽到一等獎(價值200元獎品)的概率為,抽到二等獎(價值100元獎品)的概率為,抽到三等獎(價值10元獎品)的概率為,試估計該分店在此次抽獎活動結(jié)束時送出多少元獎品?
參考公式:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對某校高一年級學生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合計 | 1 |
(1)求出表中及圖中的值;
(2)試估計他們參加社區(qū)服務(wù)的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了節(jié)約水資源,某市準備按照居民家庭年用水量實行階梯水價.水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計圖.如圖所示,下面四個推斷( )
①年用水量不超過180m3的該市居民家庭按第一檔水價交費;
②年用水量超過240m3的該市居民家庭按第三檔水價交費;
③該市居民家庭年用水量的中位數(shù)在150﹣180之間;
④該市居民家庭年用水量的平均數(shù)不超過180.
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極點, 軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線的參數(shù)方程為,( 為參數(shù), ),曲線的極坐標方程為.
(1)求曲線的直角坐標方程;
(2)設(shè)直線與曲線相交于, 兩點,當變化時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}是等差數(shù)列,前n項和為Sn , {bn}是單調(diào)遞增的等比數(shù)列,b1=2是a1與a2的等差中項,a3=5,b3=a4+1,若當n≥m時,Sn≤bn恒成立,則m的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com