9.已知橢圓的標準方程為$\frac{x^2}{10}+{y^2}=1$,則橢圓的焦點坐標為( 。
A.$({\sqrt{10},0}),({-\sqrt{10},0})$B.$({0,\sqrt{10}}),({0,-\sqrt{10}})$C.(0,3),(0,-3)D.(3,0),(-3,0)

分析 直接由橢圓的方程求得a2,b2的值,再由隱含條件求得c得答案.

解答 解:由橢圓的標準方程$\frac{x^2}{10}+{y^2}=1$,得
a2=10,b2=1,
∴c2=a2-b2=10-1=9,則c=3,
∴橢圓的焦點坐標為(3,0),(-3,0).
故選:D.

點評 本題考查橢圓的標準方程,考查了橢圓的簡單性質(zhì),是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.若變量x,y滿足$\left\{\begin{array}{l}{x≥2}\\{y≥2}\\{x+y≤8}\end{array}\right.$z=$\frac{x}{a}$+$\frac{y}$(a≥b>0)的最大值2,則有( 。
A.ab-3a-b=0B.ab-a-3b=0C.ab-a-b=0D.ab+a-b=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.將函數(shù)y=f(x)的圖象向左平移1個單位,再縱坐標不變,橫坐標伸長到原來的$\frac{π}{3}$倍,然后再向上平移1個單位,得到函數(shù)y=$\sqrt{3}$sinx的圖象.
(1)求y=f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若h(x)=-$\frac{{2\sqrt{3}}}{3}$f(x)+2-$\frac{{2\sqrt{3}}}{3}$+m的定義域為[$\frac{9}{2}$,$\frac{15}{2}$],值域為[{2,5}],求m的值.
(3)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=2對稱,求當x∈[0,1]時,有t2-2t-3≤g(x)≤-$\frac{1}{2}({t^2}-t-3)$恒成立,求t的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若復數(shù)z=sinθ-$\frac{3}{5}$+(cosθ-$\frac{4}{5}$)i是純虛數(shù),則tanθ的值為(  )
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.二項式(x-2)5展開式中x的系數(shù)為( 。
A.5B.16C.80D.-80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.計算:sin15°=$\frac{\sqrt{6}-\sqrt{2}}{4}$;$\frac{1+tan15°}{1-tan15°}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,設(shè)M為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)上任意一點,O為原點,過點M作雙曲線兩漸近線的平行線,分別與兩漸近線交于A,B兩點,探求平行四邊形MAOB的面積,由此可以發(fā)現(xiàn)什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.過雙曲線x2-$\frac{{y}^{2}}{15}$=1的右支上一點P,分別向圓C1:(x+4)2+y2=4和圓C2:(x-4)2+y2=1作切線,切點分別為M,N,則|PM|2-|PN|2的最小值為13.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.△ABC中,a=5,b=7,c=x,若它是銳角三角形,求c的范圍.

查看答案和解析>>

同步練習冊答案