A. | ab-3a-b=0 | B. | ab-a-3b=0 | C. | ab-a-b=0 | D. | ab+a-b=0 |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,求出目標(biāo)函數(shù)的取得最大值時(shí)的最優(yōu)解,即可得到結(jié)論.
解答 解:由z=$\frac{x}{a}$+$\frac{y}$得y=-$\frac{a}$x+bz,
作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
平移直線(xiàn)y=-$\frac{a}$x+bz,
∵a≥b>0,∴斜率k=-$\frac{a}$∈[-1,0),
由圖象知當(dāng)直線(xiàn)經(jīng)過(guò)點(diǎn)A時(shí),直線(xiàn)的截距最大,此時(shí)z最大,
由$\left\{\begin{array}{l}{x=2}\\{x+y=8}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=6}\end{array}\right.$,即A(2,6),
此時(shí)z═$\frac{x}{a}$+$\frac{y}$=2,即$\frac{2}{a}+\frac{6}=2$,
即ab-3a-b=0,
故選:A.
點(diǎn)評(píng) 本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合以及目標(biāo)函數(shù)的幾何意義是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 8 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-ln2 | B. | ln2 | C. | 2$\sqrt{e}$-3 | D. | e2-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({\sqrt{10},0}),({-\sqrt{10},0})$ | B. | $({0,\sqrt{10}}),({0,-\sqrt{10}})$ | C. | (0,3),(0,-3) | D. | (3,0),(-3,0) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com