【題目】在四棱錐P-ABCD中,底面ABCD是直角梯形,,平面平面ABCD.

1)求證:;

2)若,且,求四棱錐P-ABCD的體積.

【答案】1)證明見解析;(2

【解析】

1)取CD的中點M,連接AM,由條件知四邊形BCMA為正方形,可得,再由平面平面ABCD,平面ABCD,平面平面,即可證得平面PAD,從而證得;

2)過點PAD的延長線于點E,可證PE為四棱錐的高,再根據(jù)幾何關(guān)系計算相關(guān)棱長,并利用面積公式和,即可求得,進而求得四棱錐P-ABCD的體積.

1)證明:如圖,在直角梯形ABCD中,取CD的中點M,連接AM

由條件知四邊形BCMA為正方形,

,

∵平面平面ABCD平面ABCD,

平面平面平面PAD,

平面PAD,;

2)過點PAD的延長線于點E,如圖,

∵平面平面ABCD,平面PAD,平面平面,

平面ABCD.

設(shè),則,

,,,

為等腰三角形,易得邊上的高為,

,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某單位共有老年人120人,中年人360人,青年人n人,為調(diào)查身體健康狀況,需要從中抽取一個容量為m的樣本,用分層抽樣的方法進行抽樣調(diào)查,樣本中的中年人為6人,則nm的值不可以是下列四個選項中的哪組( )

A.n=360,m=14B.n=420,m=15C.n=540m=18D.n=660,m=19

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,的焦點為,過點的直線的斜率為,與拋物線交于,兩點,拋物線在點,處的切線分別為,兩條切線的交點為

1)證明:;

2)若的外接圓與拋物線有四個不同的交點,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,等腰梯形中,,,,中點,以為折痕把折起,使點到達點的位置(平面).

(Ⅰ)證明:;

(Ⅱ)若直線與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國,緊跟黨走”為主題的黨史知識競賽。從參加競賽的學生中,隨機抽取40名學生,將其成績分為六段,,,到如圖所示的頻率分布直方圖.

1)求圖中的值及樣本的中位數(shù)與眾數(shù);

2)若從競賽成績在兩個分數(shù)段的學生中隨機選取兩名學生,設(shè)這兩名學生的競賽成績之差的絕對值不大于分為事件,求事件發(fā)生的概率.

3)為了激勵同學們的學習熱情,現(xiàn)評出一二三等獎,得分在內(nèi)的為一等獎,得分在內(nèi)的為二等獎, 得分在內(nèi)的為三等獎.若將頻率視為概率,現(xiàn)從考生中隨機抽取三名,設(shè)為獲得三等獎的人數(shù),求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為且滿足,當時,.

1)判斷上的單調(diào)性并加以證明;

2)若方程有實數(shù)根,則稱為函數(shù)的一個不動點,設(shè)正數(shù)為函數(shù)的一個不動點,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以原點為極點,以軸為非負半軸為極軸建立極坐標系,兩坐標系相同的長度單位.圓的方程為被圓截得的弦長為.

(Ⅰ)求實數(shù)的值;

(Ⅱ)設(shè)圓與直線交于點,若點的坐標為,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某某大學藝術(shù)專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;

(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),實數(shù)滿足;

1)當函數(shù)的定義域為時,求的值域;

2)求函數(shù)關(guān)系式,并求函數(shù)的定義域

3)在(2)的結(jié)論中,對任意,都存在,使得成立,求實數(shù)的取值范圍;

查看答案和解析>>

同步練習冊答案