9.春節(jié)時(shí),中山公園門前的樹上掛了兩串彩燈,這兩串彩燈的第一次閃亮相互不影響,若接通電后的4秒內(nèi)任一時(shí)刻等可能發(fā)生,然后每串彩燈在4秒內(nèi)間隔閃亮,那么這兩串彩燈同時(shí)通電后它們第一次閃亮的時(shí)刻相差不超過1秒的概率是$\frac{7}{16}$.

分析 設(shè)兩串彩燈第一次閃亮的時(shí)刻分別為x,y,由題意可得0<x<4,0<y<4,要滿足條件須|x-y|≤1,作出其對(duì)應(yīng)的平面區(qū)域,由幾何概型可得答案.

解答 解:設(shè)這兩串彩燈在第一次閃亮?xí)r的時(shí)間分別為x,y,則$\left\{\begin{array}{l}{0<x<4}\\{0<y<4}\\{|x-y|≤1}\end{array}\right.$,
作出不等式組表示的區(qū)域,
由幾何概型的概率公式得所求概率為P=$\frac{16-9}{16}$=$\frac{7}{16}$.
故答案為:$\frac{7}{16}$.

點(diǎn)評(píng) 本題考查幾何概型,考查學(xué)生的轉(zhuǎn)化能力,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為菱形,AC=4,BD=2,且側(cè)棱AA1=3.其中O1為A1C1與B1D1的交點(diǎn).
(1)求點(diǎn)B1到平面D1AC的距離;
(2)在線段BO1上,是否存在一個(gè)點(diǎn)P,使得直線AP與CD1垂直?若存在,求出線段BP的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知y=$\sqrt{m{x}^{2}+2mx+8}$的定義域?yàn)槿w實(shí)數(shù),求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=$\sqrt{2}$,AF=1,M是線段EF的中點(diǎn).
(Ⅰ)求證:AM∥平面BDE;
(Ⅱ)求證:AM⊥平面BDF;
(Ⅲ) 求A點(diǎn)到面BDF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-mx2(m∈R).
(Ⅰ)當(dāng)m=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間.
(Ⅱ)當(dāng)m<0時(shí),是否存在實(shí)數(shù)x1,x2(0<x1<x2),使得當(dāng)x∈[x1,x2]時(shí),函數(shù)  f(x)的值域是[ax12-1,ax22-1](a∈R)?若存在,求出實(shí)數(shù)a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤2}\\{x+y≥4}\\{x-y≤1}\end{array}\right.$,則z=3x+y的最大值為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)a,b∈R,e=2.71828…是自然對(duì)數(shù)的底數(shù),函數(shù)f(x)=ex+ax+b在點(diǎn)(0,1)處的切線與x軸平行.
(1)求a,b的值;
(2)若對(duì)一切x∈R,關(guān)于x的不等式f(x)≥(m-1)x+n恒成立,求m+n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖所示三角形數(shù)陣中,aij為第i行第j個(gè)數(shù),若amn=2017,則實(shí)數(shù)對(duì)(m,n)為(45,41).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.從吉安市某校高一的1000名學(xué)生隨機(jī)抽取50名分析期中考試數(shù)學(xué)成績(jī),被抽取學(xué)生成績(jī)?nèi)拷橛?5分和135分之間,將抽取的成績(jī)分成八組:第一組[95,100],第二組[100,105],…,第八組[130,135],如圖是按上述分組得到的頻率分布直方圖的一部分,已知前三組的人數(shù)成等差數(shù)列,第六組的人數(shù)為4人,第一組的人數(shù)是第七組、第八組人數(shù)之和.
(1)在圖上補(bǔ)全頻率分布直方圖,并估計(jì)該校1000名學(xué)生中成績(jī)?cè)?20分以上(含120分)的人數(shù);
(2)若從成績(jī)屬于第六組,第八組的所有學(xué)生中隨機(jī)抽取兩名學(xué)生,記他們的成績(jī)分別為x,y,事件G=||x-y|≤5|,求P(G).

查看答案和解析>>

同步練習(xí)冊(cè)答案