【題目】如圖,四邊形為正方形,平面,.

1)證明:平面平面;

2)求二面角的余弦值.

【答案】1)證明見解析.(2

【解析】

為坐標(biāo)原點(diǎn),線段的長(zhǎng)為單位長(zhǎng),射線軸的正半軸建立空間直角坐標(biāo)系.

1)求出相應(yīng)點(diǎn)的坐標(biāo),根據(jù)線面垂直的判斷定理、面面垂直的判定定理,結(jié)合空間向量數(shù)量積的坐標(biāo)運(yùn)算公式進(jìn)行證明即可;

2)利用空間向量夾角公式,結(jié)合平面法向量的求法進(jìn)行求解即可.

如圖,

為坐標(biāo)原點(diǎn),線段的長(zhǎng)為單位長(zhǎng),射線軸的正半軸建立空間直角坐標(biāo)系.

1)證明:依題意有,,,

,.

所以.

,.

平面.

平面

所以平面平面.

2)依題意有,,.

設(shè)是平面的法向量,則

,即.

因此可取.

設(shè)是平面的法向量,則

,可取,所以.

故二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間近似滿足關(guān)系式為大于0的常數(shù)).按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時(shí)為優(yōu)等品.現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:

尺寸

38

48

58

68

78

88

質(zhì)量

16.8

18.8

20.7

22.4

24

25.5

質(zhì)量與尺寸的比

0.442

0.392

0.367

0.329

0.308

0.290

(I)現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記為取到優(yōu)等品的件數(shù),試求隨機(jī)變量的分布列和期望;

(II)根據(jù)測(cè)得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計(jì)量的值如下表:

75.3

24.6

18.3

101.4

(i)根據(jù)所給統(tǒng)計(jì)量,求關(guān)于的回歸方程;

(ii)已知優(yōu)等品的收益(單位:千元)與的關(guān)系為,則當(dāng)優(yōu)等品的尺寸為何值時(shí),收益的預(yù)報(bào)值最大? (精確到0.1)

附:對(duì)于樣本, 其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列和等比數(shù)列,其中的公差不為0.設(shè)是數(shù)列的前n項(xiàng)和.若,,是數(shù)列的前3項(xiàng),且

1)求數(shù)列的通項(xiàng)公式;

2)若數(shù)列為等差數(shù)列,求實(shí)數(shù)t;

3)構(gòu)造數(shù)列,,,,,,,…,,,…,,….若該數(shù)列前n項(xiàng)和,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)?/span>(-2,2),函數(shù)g(x)=f(x-1)+f(3-2x).

(1)求函數(shù)g(x)的定義域

(2)f(x)是奇函數(shù),且在定義域上單調(diào)遞減求不等式g(x)0的解集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義域?yàn)?/span>R的奇函數(shù).

k值;

,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;

,且上的最小值為,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線, ,則下列說法正確的是( )

A. 上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

B. 上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

C. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線

D. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在定義域內(nèi)存在實(shí)數(shù),使得成立,則稱函數(shù)有“飄移點(diǎn)”

試判斷函數(shù)及函數(shù)是否有“飄移點(diǎn)”并說明理由;

若函數(shù)有“飄移點(diǎn)”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,且保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和費(fèi)率浮動(dòng)比率表

浮動(dòng)因素

浮動(dòng)比率

A1

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

A2

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

A3

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

A4

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

A5

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

A6

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:

①若該銷售商店內(nèi)有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選2輛車,求這2輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進(jìn)120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快餐代賣店代售多種類型的快餐,深受廣大消費(fèi)者喜愛.其中,種類型的快餐每份進(jìn)價(jià)為元,并以每份元的價(jià)格銷售.如果當(dāng)天20:00之前賣不完,剩余的該種快餐每份以元的價(jià)格作特價(jià)處理,且全部售完.

(1)若該代賣店每天定制種類型快餐,求種類型快餐當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式;

(2)該代賣店記錄了一個(gè)月天的種類型快餐日需求量(每天20:00之前銷售數(shù)量)

日需求量

天數(shù)

(i)假設(shè)代賣店在這一個(gè)月內(nèi)每天定制種類型快餐,求這一個(gè)月種類型快餐的日利潤(rùn)(單位:元)的平均數(shù)(精確到);

(ii)若代賣店每天定制種類型快餐,以天記錄的日需求量的頻率作為日需求量發(fā)生的概率,求種類型快餐當(dāng)天的利潤(rùn)不少于元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案