試題分析:∵
,∴
,∴數(shù)列
為首項(xiàng)是1公差是3的等差數(shù)列,故
,∵
3n-2=2008,∴n=670
點(diǎn)評:熟練掌握等差、等比數(shù)列的定義及通項(xiàng)公式是解決此類問題的關(guān)鍵,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知數(shù)列
滿足
,
,則該數(shù)列的通項(xiàng)公式
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
兩數(shù)
與
等差中項(xiàng)是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
,
滿足:
.
(1)若
,求數(shù)列
的通項(xiàng)公式;
(2)若
,且
.
① 記
,求證:數(shù)列
為等差數(shù)列;
② 若數(shù)列
中任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次,求首項(xiàng)
應(yīng)滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知等差數(shù)列
中,
,則前10項(xiàng)和
( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
的前項(xiàng)和為
,滿足
,
(1)令
,證明:
;
(2)求數(shù)列
的通項(xiàng)公式。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
是各項(xiàng)都為正數(shù)的等比數(shù)列,
是等差數(shù)列,且
,
(1)求
,
的通項(xiàng)公式;
(2)記
的前
項(xiàng)和為
,求證:
;
(3)若
均為正整數(shù),且
記所有可能乘積
的和
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)數(shù)列
都是等差數(shù)列,若
,則
__________。
查看答案和解析>>