2.湖面上漂著一個小球,湖水結冰后將球取出,冰面上留下一個直徑為12cm,深2cm的空穴,則該球的表面積是( 。
A.100πcm2B.200πcm2C.$\frac{400π}{3}c{m^2}$D.400πcm2

分析 作出空穴的截面圖,根據(jù)截面圖求出球的半徑即可求出球的表面積.

解答 解:作出空穴的截面圖,
由題意知AB=12cm,CD=2cm.
則BC=6cm,設球比較為R,
則OC=R-2,
在直角三角形OCB中,OB2=OC2+BC2
即R2=(R-2)2+62,
即R=10,
∴該球的表面積為4πR2=400π,
故選:D.

點評 本題主要考查球的表面積的計算,根據(jù)條件求出球半徑是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.△ABC的內角為A、B、C,其中A=$\frac{π}{4}$,cosC=$\frac{3\sqrt{10}}{10}$,BC=$\sqrt{10}$.點D是邊AC的中點,則中線BD的長為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設橢圓$M:\frac{x^2}{{2{c^2}}}+\frac{y^2}{c^2}=1$,其中c>0.
(1)若橢圓M的焦點為F1、F2,且$|{{F_1}{F_2}}|=2\sqrt{6},P$為M上一點,求|PF1|+|PF2|的值;
(2)如圖所示,A是橢圓上一點,且A在第二象限,A與B關于原點對稱,C在x軸上,且AB與x軸垂直,若$\overrightarrow{CA}•\overrightarrow{CB}=-4$,△ABC的面積為4.
(1)求橢圓M的方程;
(2)若直線l與橢圓M交于P、Q,且四邊形APCQ為平行四邊形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.某手機配件生產(chǎn)流水線共有甲、乙兩條,產(chǎn)量s(單位:個)與時間t(單位:天)的關系如圖所示,則接近t0天時,下列結論中正確的是(  )
A.甲的日生產(chǎn)量大于乙的日生產(chǎn)量
B.甲的日生產(chǎn)量小于乙的日生產(chǎn)量
C.甲的日生產(chǎn)量等于乙的日生產(chǎn)量
D.無法判定甲的日生產(chǎn)量與乙的日生產(chǎn)量的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個單位向量,其夾角為θ,若向量$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,|$\overrightarrow{a}$|=1,則θ=( 。
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某奶茶店為了促銷,準備推出“擲骰子(投擲各面數(shù)字為1到6的均勻正方體,看面朝上的點數(shù))贏代金券”的活動,游戲規(guī)則如下:顧客每次消費后,可同時投擲兩枚骰子一次,贏得一等獎、二等獎、三等獎和感謝獎四個等級的代金券,用于在以后來店消費中抵用現(xiàn)金.設事件A:“兩連號”;事件B:“兩個同點”;事件C:“同奇偶但不同點”.
①將以上三種擲骰子的結果,按出現(xiàn)概率由低到高,對應定為一、二、三等獎要求的條件;
②本著人人有獎原則,其余不符合一、二、三等獎要求的條件均定為感謝獎.請?zhí)嬖摰甓ǔ龈鱾等級獎依次對應的事件并求相應概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.有下列四種說法,其中正確的有2個.
甲:在△ABC中,若$sinA=\frac{1}{2}$,則∠A=30°
乙:cos(2π-A)=cosA
丙:任何一個角都存在正(余)弦值和正切值        
。簊in2130°+sin2140°=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在數(shù)列{an}中,已知a1=2,a2=7,an+2等于${a_n}•{a_{n+1}}(n∈{N^*})$的個位數(shù),則a2016的值是(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知某正四面體的內切球體積是1,則該正四面體的外接球的體積是(  )
A.27B.16C.9D.3

查看答案和解析>>

同步練習冊答案