【題目】如圖,在直三棱柱 中, , , , 分別為 , 的中點(diǎn).
(1)求證: 平面 ;
(2)求異面直線 與所成角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:
(1)取的中點(diǎn),連接, ,由題意可得為平行四邊形,則,利用線面平行的判定定理可得平面
(2)取的中點(diǎn),連接, ,由題意可得或其補(bǔ)角為異面直線與所成的角.結(jié)合幾何關(guān)系計(jì)算可得,則異面直線所成角的余弦值為.
試題解析:
(1)如圖,取 的中點(diǎn) ,連接 ,
∵ , 分別為 , 的中點(diǎn),∴
∴,則 為平行四邊形,∴
又∵ 平面 , 平面 ,∴平面
(2)如圖,取 的中點(diǎn),連接 , ,則
∴ 或其補(bǔ)角為異面直線 與 所成的角.
設(shè) ,則 , , ,
在等腰三角形 中,
故異面直線 所成角的余弦值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(x+2)=f(x).當(dāng)x∈[0,1]時,f(x)=2x.若在區(qū)間[﹣2,3]上方程ax+2a﹣f(x)=0恰有四個不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( )
A.( , )
B.( , )
C.( ,2)
D.(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M(x0 , 2 )(x0> )是拋物線C上一點(diǎn),圓M與線段MF相交于點(diǎn)A,且被直線x= 截得的弦長為 |MA|,若 =2,則|AF|等于( )
A.
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣k( +lnx),若x=2是函數(shù)f(x)的唯一一個極值點(diǎn),則實(shí)數(shù)k的取值范圍為( )
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為點(diǎn),點(diǎn)在圓上,直線過點(diǎn)且與圓相交于兩點(diǎn),點(diǎn)是線段的中點(diǎn).
(1)求圓的方程;
(2)若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有命題:
①y=|sinx-|的周期是2π;
②y=sinx+sin|x|的值域是[0,2] ;
③方程cosx=lgx有三解;
④為正實(shí)數(shù),在上遞增,那么的取值范圍是;
⑤在y=3sin(2x+)中,若f(x)=f(x2)=0,則x1-x2必為的整數(shù)倍;
⑥若A、B是銳角△ABC的兩個內(nèi)角,則點(diǎn)P(cosB-sinA,sinB-cosA)在第二象限;
⑦在中,若,則鈍角三角形。
其中真命題個數(shù)為( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)M(0,1)的直線l交橢圓C: 于A,B兩點(diǎn),F(xiàn)1為橢圓的左焦點(diǎn),當(dāng)△ABF1周長最大時,直線l的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M: 和點(diǎn) ,動圓P經(jīng)過點(diǎn)N且與圓M相切,圓心P的軌跡為曲線E.
(1)求曲線E的方程;
(2)點(diǎn)A是曲線E與x軸正半軸的交點(diǎn),點(diǎn)B,C在曲線E上,若直線AB,AC的斜率分別是k1 , k2 , 滿足k1k2=9,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是兩條不同的直線, 是三個不同的平面,給出下列四個命題:
①若,則 ②若,則
③若,則 ④若,則
其中正確命題的序號是( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com