2.已知復(fù)數(shù)z1=a2-3+(a+5)i,z2=a-1+(a2+2a-1)i(a∈R)分別對應(yīng)向量$\overrightarrow{O{Z}_{1}}$,$\overrightarrow{O{Z}_{2}}$(O為原點(diǎn))
(1)若向量$\overrightarrow{O{Z}_{1}}$表示的點(diǎn)的坐標(biāo)在第四象限,求a的取值范圍;
(2)若向量$\overrightarrow{{Z}_{1}{Z}_{2}}$對應(yīng)的復(fù)數(shù)為純虛數(shù),求a的值.

分析 (1)由向量$\overrightarrow{O{Z}_{1}}$表示的點(diǎn)的坐標(biāo)在第四象限,列出不等式組,求解即可得到a的取值范圍;
(2)根據(jù)向量$\overrightarrow{{Z}_{1}{Z}_{2}}$對應(yīng)的復(fù)數(shù)為z2-z1=-(a2-a-2)+(a2+a-6)i為純虛數(shù),可得-(a2-a-2)=0,且(a2+a-6)≠0,由此求得a的值.

解答 解:(1)∵復(fù)數(shù)z1=a2-3+(a+5)i,向量$\overrightarrow{O{Z}_{1}}$表示的點(diǎn)的坐標(biāo)在第四象限,
∴$\left\{\begin{array}{l}{{a}^{2}-3>0}\\{a+5<0}\end{array}\right.$,解得a<-5.
∴a的取值范圍是a<-5;
(2)∵$\overrightarrow{{Z}_{1}{Z}_{2}}$=$\overrightarrow{O{Z}_{2}}$-$\overrightarrow{O{Z}_{1}}$,
∴向量$\overrightarrow{{Z}_{1}{Z}_{2}}$對應(yīng)的復(fù)數(shù)為z2-z1=[a-1+(a2+2a-1)i]-[a2-3+(a+5)i]
=-(a2-a-2)+(a2+a-6)i.
再根據(jù)向量$\overrightarrow{{Z}_{1}{Z}_{2}}$對應(yīng)的復(fù)數(shù)為純虛數(shù),可得-(a2-a-2)=0,且(a2+a-6)≠0.
解得a=-1.

點(diǎn)評 本題考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查了復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在平面直角坐標(biāo)系xOy中,已知角(α+$\frac{π}{4}$)的終邊經(jīng)過點(diǎn)P(1,$\sqrt{3}$),則tanα的值為2-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若f(cosx)=3-sin2x,則f(sinx)=(  )
A.3-cos2xB.3-sin2xC.3+cos2xD.3+sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)點(diǎn)P的坐標(biāo)為(x-3,y-2).
(1)在一個(gè)盒子中,放有標(biāo)號為1,2,3的三張卡片,現(xiàn)在從盒子中隨機(jī)取出一張卡片,記下標(biāo)號后把卡片放回盒中,再從盒子中隨機(jī)取出一張卡片記下標(biāo)號,記先后兩次抽取卡片的標(biāo)號分別為x、y,求點(diǎn)P在第二象限的概率;
(2)若利用計(jì)算機(jī)隨機(jī)在區(qū)間[0,3]上先后取兩個(gè)數(shù)分別記為x、y,求點(diǎn)P在第三象限的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S8>S9>S7,給出下列四個(gè)命題:
①d<0; 
②S16<0; 
③數(shù)列{Sn}中的最大項(xiàng)為S15;
④|a8|>|a9|.
其中正確命題有①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知復(fù)數(shù)Z=(m2+5m+6)+(m2-2m-15)i,當(dāng)實(shí)數(shù)m為何值時(shí):
(1)Z為實(shí)數(shù);
(2)Z為純虛數(shù);
(3)復(fù)數(shù)Z對應(yīng)的點(diǎn)Z在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)數(shù)z滿足($\overline z$-3)(2-i)=5(i為虛數(shù)單位),則z為(  )
A.-2+iB.2-iC.5+iD.5-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(1,1,0),則與$\overrightarrow{a}$共線的單位向量$\overrightarrow{e}$=( 。
A.($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$,0)B.(0,1,0)C.($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,0)D.(1,1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線y=x-1的傾斜角為45度.

查看答案和解析>>

同步練習(xí)冊答案