12.直線y=x-1的傾斜角為45度.

分析 根據(jù)直線方程求出斜率,根據(jù)斜率得出對應(yīng)的傾斜角.

解答 解:直線y=x-1的斜率是1,
所以傾斜角為45°.
故答案為:45.

點(diǎn)評 本題考查了根據(jù)直線方程求斜率與傾斜角的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知復(fù)數(shù)z1=a2-3+(a+5)i,z2=a-1+(a2+2a-1)i(a∈R)分別對應(yīng)向量$\overrightarrow{O{Z}_{1}}$,$\overrightarrow{O{Z}_{2}}$(O為原點(diǎn))
(1)若向量$\overrightarrow{O{Z}_{1}}$表示的點(diǎn)的坐標(biāo)在第四象限,求a的取值范圍;
(2)若向量$\overrightarrow{{Z}_{1}{Z}_{2}}$對應(yīng)的復(fù)數(shù)為純虛數(shù),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,半徑為2的半球內(nèi)有一內(nèi)接正六棱錐P-ABCDEF(底面正六邊形ABCDEF的中心為球心).求:正六棱錐P-ABCDEF的體積和側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在復(fù)平面上,復(fù)數(shù)-3-2i、-4+5i、2+i、z分別對應(yīng)點(diǎn)A、B、C、D,且ABCD為平行四邊形,則z=3-6i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.“m<$\frac{1}{2}$”是“關(guān)于x的一元二次方程x2+x+m=0有實(shí)數(shù)解”的必要不充分條件(從“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中選一個(gè))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如果橢圓$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}$=1上點(diǎn)M的橫坐標(biāo)是-4,那么M點(diǎn)到橢圓右焦點(diǎn)F2(c,0)的距離|F2M|=4+$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.圓x2+y2-8x+6y+16=0與圓x2+y2=64的位置關(guān)系是( 。
A.相交B.內(nèi)切C.相離D.外切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,底面ABCD是邊長等于2的正方形,其他四個(gè)側(cè)面都是邊長等于$\sqrt{5}$的等腰三角形,點(diǎn)E是PC中點(diǎn).
(1)求證:PA∥平面EBD;
(2)求證:平面PAC⊥平面PBD;
(3)若該四棱錐P-ABCD是一個(gè)銅制的幾何體,將它熔鑄成一個(gè)實(shí)心球體,假設(shè)熔鑄過程沒有材料損失,求這個(gè)球體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知離散型隨機(jī)變量X的分布列如下:
X012
Pa4a5a
則均值E(X)與方差D(X)分別為(  )
A.1.4,0.2B.0.44,1.4C.1.4,0.44D.0.44,0.2

查看答案和解析>>

同步練習(xí)冊答案