18.已知函數(shù)f(x)=ax3-x+c(a,c為常數(shù)),且f′(1)=2,則a的值為( 。
A.1B.$\sqrt{2}$C.0D.-1

分析 先求導(dǎo),再代值計算即可.

解答 解:∵f(x)=ax3-x+c,
∴f′(x)=3ax2-1,
∵f′(1)=2,
∴3a-1=2,
解得a=1,
故選:A.

點(diǎn)評 本題考查了導(dǎo)數(shù)的運(yùn)算法則,掌握基本導(dǎo)數(shù)公式是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在△ABC中,BC邊上的中線AD長為3,且cosB=$\frac{{\sqrt{10}}}{8}$,cos∠ADC=-$\frac{1}{4}$.
(1)求sin∠BAD的值;
(2)求DC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線l:x+2y-3=0,直線l1過點(diǎn)(2,3).
(1)若l1⊥l,求直線l1的方程;
(2)若l1∥l,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若不等式ax2-ax+1>0的解集為R,則a的取值區(qū)間為( 。
A.(-4,0]B.(-4,4)C.[0,4)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.關(guān)于x的不等式組$\left\{\begin{array}{l}{x-1>{a}^{2}}\\{x-4<2a}\end{array}\right.$有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知U=R,函數(shù)y=ln(1-x2)的定義域?yàn)镸,集合N={x|x2-x<0},則下列結(jié)論正確的是( 。
A.M∪N=UB.M∩N=NC.M∩(∁UN)=∅D.M⊆∁UN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究居民的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)80名居民,得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視運(yùn)動合計
101020
105060
總計206080
(Ⅰ)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“居民的休閑方式與性別有關(guān)系”?
(Ⅱ)將此樣本的頻率估計為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人以運(yùn)動為休閑方式的人數(shù)為隨機(jī)變量X.求X的分布列、數(shù)學(xué)期望和方差.
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知方程x2-3x+1=0的兩根為x1和x2,求(x1-3)(x2-3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=2ln3x+8x,則$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{△x}$的值為( 。
A.-20B.-10C.10D.20

查看答案和解析>>

同步練習(xí)冊答案