19.在△ABC中,角A.B.C的對(duì)邊分別為a,b,c,若a2+c2=b2+$\sqrt{2}$ac,則∠B=45°.

分析 由已知可得a2+c2-b2=$\sqrt{2}$ac,利用余弦定理可求cosB=$\frac{\sqrt{2}}{2}$,結(jié)合范圍B∈(0°,180°),即可得解B的值.

解答 解:在△ABC中,∵a2+c2=b2+$\sqrt{2}$ac,
∴a2+c2-b2=$\sqrt{2}$ac,
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{\sqrt{2}ac}{2ac}$=$\frac{\sqrt{2}}{2}$,
∵B∈(0°,180°),
∴B=45°.
故答案為:45°.

點(diǎn)評(píng) 本題主要考查了余弦定理,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是( 。
A.16 cm3B.18 cm3C.20 cm3D.24 cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.表面積為24π的圓柱,當(dāng)其體積最大時(shí),該圓柱的底面半徑與高的比為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知命題p:?x∈[-1,2],x+a≤0,若命題p是假命題,則實(shí)數(shù)a的取值范圍是(1,+∞).(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在5道題中有3道理科題和2道文科題,如果不放回地依次抽2道題,在第一次抽到理科題的條件下,第二次抽到理科題的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,正三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)和底面邊長(zhǎng)均為2,D是BC的中點(diǎn).
    (1)求直線A1B與C1D所成角的余弦值;
(2)求三棱錐C1-ADB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.某幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的數(shù)據(jù),可得這個(gè)幾何體的表面積為4+4$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的x軸的正半軸重合.直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-1+\frac{3}{5}t}\\{y=-1+\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)設(shè)直線l與曲線C相交于M,N兩點(diǎn),求M,N兩點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)已知A(1,2),B(-1,0),C(3,a)三點(diǎn)共線,求a的值.
(2)已知A(1,-1),B(2,2),C(3,0)三點(diǎn),求點(diǎn)D的坐標(biāo),使直線CD⊥AB,且BC∥AD.

查看答案和解析>>

同步練習(xí)冊(cè)答案