9.(1)已知A(1,2),B(-1,0),C(3,a)三點共線,求a的值.
(2)已知A(1,-1),B(2,2),C(3,0)三點,求點D的坐標,使直線CD⊥AB,且BC∥AD.

分析 (1)A,B,C三點共線,可得kAB=kAC,即可得出.
(2)由直線CD⊥AB,且BC∥AD.可得kAB•kCD=-1,kBC=kAD

解答 解:(1)kAB=$\frac{2-0}{1-(-1)}$=1,kAC=$\frac{2-a}{1-3}$=$\frac{a-2}{2}$.∵A,B,C三點共線,∴kAB=kAC,
∴$\frac{a-2}{2}$=1,解得a=4.
(2)設D(x,y),kAB=$\frac{-1-2}{1-2}$=3,kCD=$\frac{y-0}{x-3}$=$\frac{y}{x-3}$,kBC=$\frac{2-0}{2-3}$=-2,kAD=$\frac{y+1}{x-1}$.
∵直線CD⊥AB,且BC∥AD.
∴kAB•kCD=3•$\frac{y}{x-3}$=-1,kBC=kAD,即$\frac{y+1}{x-1}$=-2.
聯(lián)立解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,即D(0,1).

點評 本題考查了直線斜率計算公式、相互垂直與相互平行的直線斜率之間的關系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.在△ABC中,角A.B.C的對邊分別為a,b,c,若a2+c2=b2+$\sqrt{2}$ac,則∠B=45°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.二次函數(shù)f(x)=-x2+6x在區(qū)間[0,4]上的最大值是9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖1,矩形ABCD中,AB=12,AD=6,E,F(xiàn)分別為CD,AB邊上的點,且DE=3,BF=4,將△BCE沿BE折起至△PBE位置(如圖2所示),連接AP、EF、PF,其中PF=2$\sqrt{5}$.
(1)求證:平面PEF⊥平面ABED;
(2)求點F到平面PBE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=lgx的定義域為集合A,函數(shù)$g(x)=\sqrt{4-x}$的定義域為集合B,集合C=(-∞,a].
(Ⅰ)求A∩B;
(Ⅱ)若A∩C=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若△ABC的內角滿足sinA+sinB=2sinC,則cosC的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖(其中[x]表示不超過實數(shù)x的最大整數(shù)),則運行后輸出的結果是( 。
A.31B.32C.35D.37

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知圓C:x2+y2-4x=0,直線l:mx-y+3m=0,則( 。
A.l與C相交B.l與C相切
C.l與C相離D.以上三個選項均有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,角A,B,C的對邊分別為a,b,c,已知向量$\overrightarrow m=(cosA,cosB)$,$\overrightarrow n=(a,2c-b)$,且$\overrightarrow m∥\overrightarrow n$.
(Ⅰ)求角A的大;
(Ⅱ)求sinB+sinC的最大值并判斷此時△ABC的形狀.

查看答案和解析>>

同步練習冊答案