分析 利用函數(shù)的寄偶性進行解答:令sin($\frac{π}{6}$-α)=t,則cos(α-$\frac{2π}{3}$)=-t.令g(x)=loga($\sqrt{{x}^{2}+1}$+x),則g(x)是奇函數(shù);令h(x)=$\frac{1}{{a}^{x}-1}$,則h(-x)=-1-h(x).所以將所求的函數(shù)轉化為:f(-t)=g(-t)+h(-t)+1的形式,然后利用函數(shù)的寄偶性進行解答即可.
解答 解:cos(α-$\frac{2π}{3}$)=-sin($\frac{π}{6}$-α).
令sin($\frac{π}{6}$-α)=t,則cos(α-$\frac{2π}{3}$)=-t.
令g(x)=loga($\sqrt{{x}^{2}+1}$+x),則g(x)是奇函數(shù).
令h(x)=$\frac{1}{{a}^{x}-1}$,則h(-x)=-1-h(x).
故f(t)=g(t)+h(t)+1=$\frac{1}{3}$.則g(t)+h(t)=-$\frac{2}{3}$,
f(-t)=g(-t)+h(-t)+1,
=-g(t)+[-1-h(t)]+1,
=-[g(t)+h(t)],
=$\frac{2}{3}$.
故答案為:$\frac{2}{3}$.
點評 本題考查了對數(shù)函數(shù)的圖象與性質.解題時,注意轉化思想的應用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{7}{15}$ | D. | $\frac{9}{20}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com