5.已知函數(shù)f(x)=alnx的導(dǎo)函數(shù)是f′(x)且f′(2)=2,則實(shí)數(shù)的值為(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.4

分析 由基本初等函數(shù)的求導(dǎo)公式求出f′(x),由條件列出方程求出a的值.

解答 解:由題意得,f′(x)=alnx=$\frac{a}{x}$,
因?yàn)閒′(2)=2,所以$\frac{a}{2}$=2,
則a=4,
故選D.

點(diǎn)評 本題考查基本初等函數(shù)的求導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知橢圓方程2x2+3y2=1,則它的長軸長是( 。
A.$\sqrt{2}$B.1C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某工廠修建一個(gè)長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價(jià)為120元,池壁每平方米的造價(jià)為100元.設(shè)池底長方形的長為x米.
(Ⅰ)求底面積,并用含x的表達(dá)式表示池壁面積;
(Ⅱ)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知平行六面體ABCD-A1B1C1D1中,以頂點(diǎn)A為端點(diǎn)的三條棱長都等于2,且兩兩夾角為60°,則對角線BD1的長度為( 。
A.$2\sqrt{2}$B.$\sqrt{2}$C.$2\sqrt{6}$D.$\frac{{\sqrt{3}}}{2}+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{m}+{y^2}=1$的離心率是$\sqrt{2}$,則實(shí)數(shù)m的值為(  )
A.-1B.-2C.-3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知A(2,5,-6),點(diǎn)P在y軸上,|PA|=7,則點(diǎn)P的坐標(biāo)是( 。
A.(0,8,0)B.(0,2,0)C.(0,8,0)或(0,2,0)D.(0,-8,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知一扇形的圓心角是60°,弧長是π,則這個(gè)扇形的面積是( 。
A.B.$\frac{3π}{2}$C.D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=aex-sinx在x=0處有極值,則a的值為(  )
A.-1B.0C.1D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.為比較甲、乙兩地某月14時(shí)的氣溫狀況,隨機(jī)選取該月中的5天,將這5天中14時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖.考慮以下結(jié)論:
①甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;
②甲地該月14時(shí)的平均氣溫高于乙地該月14時(shí)的平均氣溫;
③甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差.
④甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差小于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差;
其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的標(biāo)號(hào)為( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步練習(xí)冊答案