20.若數(shù)列的通項(xiàng)公式是an=3-2n,則a2n=3-4n,$\frac{{a}_{2}}{{a}_{3}}$=$\frac{1}{3}$.

分析 利用數(shù)列的通項(xiàng)公式直接求解即可.

解答 解:數(shù)列的通項(xiàng)公式是an=3-2n,則a2n=3-4n;
$\frac{{a}_{2}}{{a}_{3}}$=$\frac{3-4}{3-6}$=$\frac{1}{3}$.
故答案為:3-4n;$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查數(shù)列的函數(shù)特征,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.知函數(shù)f(x)=|lnx|,設(shè)x1≠x2且f(x1)=f(x2).
(1)證明:(x1-1)(x2-1)<0,且x1x2=1.
(2)若x1+x2+f(x1)+f(x2)>M對(duì)任意滿足條件的x1,x2恒成立,求實(shí)數(shù)M的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.過橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{3}}{3}$=1的左焦點(diǎn)F作直線交橢圓于A,B兩點(diǎn),且$\overrightarrow{BF}$=2$\overrightarrow{FA}$,則三角形0AB的面積是(0為坐標(biāo)原點(diǎn))$\frac{9\sqrt{5}}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某生產(chǎn)車間為了檢測(cè)其加工的零件的質(zhì)量,檢驗(yàn)人員需抽取同批次的零件樣本進(jìn)行檢測(cè)指標(biāo)評(píng)分.若檢測(cè)指標(biāo)評(píng)分大于60分的零件為合格零件,指標(biāo)評(píng)分不超過40分的零件將直接被淘汰,指標(biāo)評(píng)分在(40,60]內(nèi)的零件可能被修復(fù)也可能被淘汰.現(xiàn)質(zhì)檢員小張檢測(cè)出200個(gè)合格零件,根據(jù)指標(biāo)評(píng)分繪制的頻率分布直方圖如圖所示,
(1)求出頻率分布直方圖中a的值;
(2)估計(jì)這200個(gè)零件指標(biāo)評(píng)分的平均數(shù)和中位數(shù);
(Ⅱ)根據(jù)已有的經(jīng)驗(yàn),可能被修復(fù)的零件個(gè)體被修復(fù)的概率如下表:
 零件檢測(cè)指標(biāo)評(píng)分所在區(qū)間 (40,50](50,60]
 每個(gè)零件個(gè)體被修復(fù)的概率 $\frac{1}{3}$ $\frac{1}{2}$
假設(shè)每個(gè)零件被修復(fù)與否相互獨(dú)立.現(xiàn)有3個(gè)零件的檢測(cè)指標(biāo)評(píng)分(單位:分)為:38,45,52,
①求這3個(gè)零件中,至多有2個(gè)不被修復(fù)而淘汰的概率;
②記這3個(gè)零件被修復(fù)的個(gè)數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x≥2}\\{{2}^{x},x<1}\end{array}\right.$的值域?yàn)椋ā 。?table class="qanwser">A.(-∞,+∞)B.(0,+∞)C.(0,2)∪[$\frac{5}{2}$,+∞)D.(-∞,2)∪[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求函數(shù)y=sin(3x+$\frac{π}{3}$)cos(x-$\frac{π}{6}$)+cos(3x+$\frac{π}{3}$)cos(x+$\frac{π}{3}$)的圖象關(guān)于對(duì)稱軸對(duì)稱的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)為奇函數(shù),f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x∈[0,1)}\\{1-|x-3|,x∈[1,+∞)}\end{array}\right.$,方程f(x)=a(0<a<1)的所有實(shí)數(shù)根之和為( 。
A.1-2aB.2a-1C.($\frac{1}{2}$)a-1D.1-($\frac{1}{2}$)a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)$f(x)=\left\{\begin{array}{l}cos\frac{πx}{2},-1≤x≤1\\{x^2}-1,|x|>1\end{array}\right.$,則關(guān)于x的方程f2(x)-3f(x)+2=0的實(shí)根的個(gè)數(shù)是 ( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.等差數(shù)列{an}滿足a1+a9=8,則a4+a5+a6=( 。
A.16B.14C.12D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案